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Scene Graph Generation (SGG)
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- Scene graphs represent objects = :
and their relations in an image

- Scene graph generation
produces a graph from a given
image containing focused
objects and their relationships
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« Scene graph generation is a
common challenge in computer
vision

Examples taken from: N\
Herzig, Roeij, et al. "Learning canonical representations for scene graph to image generation." European Conference on Computer Vision. Springer, Cham, 2020.
Yu, Shih-Yuan, et al. "Scene-graph augmented data-driven risk assessment of autonomous vehicle decisions." IEEE Transactions on Intelligent Transportation Systems (2021).
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Motivation: Safety Critical Application

« Scene graphs can be used in safety critical fields such as
autonomous drlvmg and robotics

Waymo van involved in serious collision in Arizona
le lfd ing car crashes during US tests obot kills worker at Volkswagen plant i
‘many

 In such applications, it is important to provide safety guarantee
on the produced scenes under consistent situations
« Law of physics: Car cannot (yet) fly
. Trafﬁc rules: No contradlctory traffic S|gns
M




Motivation: Constraints Formulation

 What is safety? One aspect of safety is consistency. The system
should comply with a set of consistency constraints ®

 Consistency constraints can be expressed with logic or constraint
languages (FOL, OLC and VIATRA-Query etc.)

Rule: Nothing can be L Va, b: Above(a,b) = —Shape(b’ 'Sphere’)
above a sphere

Assumption: ground truth scenes are consistent
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« To guarantee consistency in such systems, we define and tackle the
problem of consistent scene graph generation

 Given a set of constraints ®, an image I with underlying ground truth
scene graph SG,,, find a model M for scene graph SG such that

1. The generated S¢ is close to the ground truth SG,, (accurate):
P(SG = SG,.| M)

2. The generated SG satisfy all consistency constraints & (consistent)
SG =D
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Problem Statement

.con5|stent

No explicit guarantees

accu rate

Many existing deep

learning approaches How can we guarantee

Assumption: SG,, satisfies ®: SG;; F @  FIRIETNE R INENRELENIECE:

Can help?
e N
P(SG = SG | M) SG E®
N— A~
help
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Approach Overview

Core Idea: use existing DL methods to optimize for P(SG = SG,.| M),
and handle SG = @ later with constraint optimization

Problem Domain ML-based Computer Vision Components
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Approach: ML-based Component

A ML-based vision model outputs two types of independent probabilities
for an input image to form a probabilistic graph

1. The probability of a pair of objec!

's and a relation type

Po:NXRXN - [0,1],: PR(nlnz )

2. The probability of an object, an attribute type and an attribute value

a left:0.6
Pi:N x AxV, - [0,1]: P,(n %)
A ' X X Cl ) - A n v below:0.3
above:0.4
o1: ObjectShape ‘ 02: ObjectShape
I g I d
size = small eft0.2 ize = large
shape = cylinder i hape = cube
Material = rubber rght0.1  material = metal
below:0.7
T above:0.3 | {
i
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Approach: Baseline ctd

Commonly, we can choose a corncrete scene graph from the probabilistic
SG by selecting the most probable relations and attributes individually

o1: ObjectShape o1: ObjectShape ( )
[ ]
color = green color = green CI) L]
”size = small size = small i
h = cylind shape = cylinder 1 l f <« h
fn:tz?ial gyrljnbbeerr leftf0.6 material = rubber . LE t rlg t
left0.7 right:0.3 2
right:0.1 oelopo . a . below < above
belol:0.2 ik — \_
above:0.3
‘ 02: ObjectShape 02: ObjectShape
olor = red I d
ize = larg larg
hape = cube hap b
aterial = metal terial = metal
(a) (b)
Probabilistic graph Concrete graph

No consideration of &!
Problem Formulation mm




Approach: Constraint Optimization

Instead, we propose to select the most probable scene subject to @

o1: ObjectShape

color = green

size = small

shape = cylinder

material = rubber !eﬁ 0663

. right:0.

r:gﬁ't-odﬁ below:0.3
below:0.2 above:0.4
aboye:0.3

‘ 02: ObjectShape

olor = red

ize = large

hape = cube <
aterial = metal

(@)
Probabilistic graph
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o1: ObjectShape

color = green
size = small
shape = cylinder
material = rubber

02: ObjectShape

color = red

size = large
hape = cube
E'laterial = metal

rig

A

p
P:
1. left «< right
\2' below < above

ht

()

Concrete graph

Constraint Optimization!



Approach: MAXSAT

MAXSAT is an optimization problem aiming to find the maximum subset
of clauses with weights (in CNF)

Many existing solvers: MaxSal

'z, WBO, SAT4], Gurobi

Given a set of hard constraints @, a set of clauses C with weights w

—|(|):
Ci:

maxxz w; - 1(x E C;)
j
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—oo foreach ¢ € P
w; fori € [0, n]
subjectto x & ¢ foreach ¢ in o




Approach: MAXSAT

Given a probabilistic graph G with P, and P,, our approach transform it
into a MAXSAT problem by:

1. The hard constraints are respected
—¢: —oo foreach p €

2. Edges and attributes are clauses with weights being the log probabilities

X log Pr(my75 ) Xrpa:log Py(nyv%)

3. The optimization target is to maximize the sum of log probabilities
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Evaluation: Metrics

/- SGGen: measures recall of
relations if all attribute of an
object is identified correctly

« SGGen+: measures recall
separately for relations and
\_ attributes

~

J

Ground Truth
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SGGen: 6/6, SGGen+: 18/18
SA:1, Con: 1

‘s

o

Con: measures consistency of )
the scene

SA: scene accuracy measures if
the predicted scene is isomorphic
to the ground truth scene

/

Predicted Scene

—

righ
b Iowa ove

SGGen: 2/6, SGGen+: 16/18
SA:0,Con: 0
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Evaluation: Synthetic Dataset

CLEVR: BLOCKWORLD:

-

« 4 types of constraints with different complexity were created
« Scenes are generated to satisfy the constraints
* 4000 scenes for training and 2000 for testing
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Evaluation: Synthetic Dataset

« Qur approach is better than the
baseline in all cases

« High values in relation recall
(SGGen, SGGen+) does not mean
high SA

» Qur approach always improves SA
by improving Con
« In fact, we can prove SA is
always at least as good as the
baseline scenes

Introduction Problem Formulation Approach
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« What about the performance on real-world images?

« We applied our approach on a subset of the Visual Genome
dataset with two types of constraints:
 There must be at least one person in the scene
« There is no cycle on relations such as ‘Above’, ‘Under’
« We filtered the datasets with the first constraint
« 99.85% ground truth satisfies the second type of constraints
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Evaluation: Real Dataset

« Probabilistic scenes are derived from a model pre-trained on original VG dataset

o1

eomens 02, 11
Metric Improvement (%)
b 0.1 undef: 06 SGGen 33.04 - 33.15
e SGGen+ 63.44 — 63.48
TE— Con 64.43 — 100

Under(o2, ol1) — Above(02, ol)

« SA is not measured because the labelled graph is not complete
« Our approach is still able to improve on all metrics while ensuring consistency

b}

Image credit: https://www.flickr.com/photos/todoleo/8310164456/

eI e e e ) Evalugtion P Conclusion







Thank you

O Artifacts available at: https://github.com/20001LastOrder/Clevr-Relational
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