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Background : Taxonomy

- Taxonomies represent hierarchical relations
between concepts or entities.

- Taxonomies are important in software
engineering
o domain modeling.
o object-oriented languages.
o semantic web applications.

e Taxonomy construction is identifying the
hierarchical relations between set of concepts
o parent-child: generalization
o inclusion relations: composition
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Background: Large Language Model (LLMs hv e

e Large language models (LLMs) are natural
language processing methods for Output
text generation

a N )

e For a sequence of input tokens (prompt), LLMs
estimate the probability of the next token
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e There are two methods for using pre-trained LLMs:
o Fine-tuning: adapt with a task specific dataset Input
o Prompting: provide instructions and examples

as input for the task
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Motivation: Explore LLM for Taxonomy

Incomplete

Time-consuming
Costly to

maintain

Manual taxonomy

construction

Automated
taxonomy
construction

Fine-tuning
(Existing methods)

Prompting
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Motivation: Explore LLM for Taxonomy v
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Main question:
If some training data is available, which
methods are more effective and

consistent for taxonomy construction?
Prompting or Fine-tuning?
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Objective v

We present a comparative study using LLMs for taxonomy construction

- Fine-tuning ‘o
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Automated
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construction
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Problem Formulation hv e

Given a set of concepts and constraint, create a taxonomy follows the constraints

machine learning  cross validation

learning paradigms
Supervised learning

unsupervised learning

Accurate

Concepts :

Automated
taxonomy
It must be a tree construction

* One root
* One parent

Result

taxonomy

Consistent

Constraints
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Approach Overview vz
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Approach Overview e, &
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Approach Overview v e
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Precision
Relation with | L Predicted 1 Recall
Relation weights taxonomy
prediction » Post-processing > F1
Ground truth »1  Consistency
Y Post-processing
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Relation Prediction R R

Edge weights: AN
the likelihood of

: concept A
l being a parent of
o — concept B
learning parad|gms machine Iearnlng
Relation > )
prediction supervised learning

Cross valldatlon

e

unsupervised learning —

Candidate relation
with weights
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Relation Prediction T
- —>| Predict weight for all relations]

Train a subset of the
parameters by selecting a
few layers in the LLM

Update all parameters\
with low-rank adaptation
(Reduces # parameters
during training)

Predict candidate
relations directly

You are an expert constructing a taxonomy from a list of concepts. Given a
list of concepts, construct a taxonomy by creating a list of their parent-child
relationships.

Concepts: network architectures; network design principles; naming and
addressing; programming interfaces; layering

Relationships: layering is a network design principles; namingand | |5, e
addressing is a network design principles;...

Repeat for N examples

Relations: all have
weight of 1

Few-shot Prompting

Concepts: machine learning, learning paradigms, supervised learning,
unsupervised learning, cross validation.

Relationships:

[ Prompt ]
Introduction Problem Formulation Approach
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Relation Prediction: Prompt v e
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You are an expert constructing a taxonomy from a list of concepts. Given a
list of concepts, construct a taxonomy by creating a list of their parent-child Instruction

relationships.

Concepts: network architectures; network design principles; naming and
addressing; programming interfaces; layering
Relationships: layering is a network design principles; naming and

o _ o Examples
addressing is a network design principles;...
Repeat for N examples
Few-shot Prompting
Concepts: machine learning, learning paradigms, supervised learning, Input
unsupervised learning, cross validation. Concepts
Relationships: Output
Indicator

Test Input
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Post-processing hou e

Select the set of edges Select the maximum
maximize the sum of spanning arborescence
edge weights (Maximum spanning tree
for directed graph)

Combine result from
multiple runs

\\
(run 1) taxonomy

Relations generated
by N LLM runs
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LLM result can be indeterministic ]—»
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Research Questions:

*¢. RQ1: How do the two LLM-based approaches
differ when compared to the ground truth?

RQ2: What are the differences between the

two LLM-based approaches in generating
consistent taxonomies?
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WordNet: A hypernym taxonomy (general

English language concepts)

o 14,477 unique terms with 14,877 pairs

o 761 taxonomies

o 11 to 50 terms for each taxonomy

Kidney Disease

2NN

Renal failure Polyuria Nephritis Polycystic kidney disease
/ \ h 4
Acute renal failure Chronic renal failure Glomerulonephritis

LINKOPING
UNIVERSITY

ACM CCS: newly created taxonomies in

computer science derived from ACM Computing

Classification System (CCS)
o 1846 unique terms with 1858 pairs

o 75 taxonomies

o 3 to 88 terms for each taxonomy

_—

Operations research

Decision analytics

Industry and manufacturing

Forecasting

Y

Multi-criterion optimization
and decision making

N

Supply chain management

Command and control
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RQ1: Quality [T et

RQ1: How do the two LLM-based approaches differ when compared to the ground truth?

WordNet Evaluation ACM CCS Evaluation
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70 57 ek 70
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60 60
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50 57 50 44
40 2 40 2
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(M) (MAL) \ -
.. -
I Precision (%) Recall (%) ==@u=F1(%) \ I Precision (%) Recalﬂ%]— @[] (%)
\ -
-
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-
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No methods beat SOTA,
but all better than
Random baseline
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RQ1: Quality UL,

RQ1: How do the two LLM-based approaches differ when compared to the ground truth?

WordNet Evaluation ACM CCS Evaluation
90 90
80 80 o1
70 37 64 70
55 64
60 60
5
50 57 50 44
40 2 40 2
30 30 : 33
20 20 16
10 10
Layer-wise Layer-wise | LoRA (MSA) LoRA (MALI) GPT-3.5(IB) GPT-3.5 SOTA Layer-wise Layer-wisg LoRA (MSA) LoRA (MALI) GPT-3.5(IB) GPT-3.5(MV) Random
(MSA) (MALI) (MV) (MSA) (MALI) r
—y [ / i
_pTéC'iﬁiOQ.L%] Recall (%) em@umF1 (%) , I Precision (%) Recall (%) e=i@pmmF1 (%)
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Improve consistency N
(MSA v.s. MALI) also
improves the f1 score of
the taxonomy
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RQ1: Quality [T et

RQ1: How do the two LLM-based approaches differ when compared to the ground truth?

WordNet Evaluation ACM CCS Evaluation
90 90
80 80 o1
70 37 64 70
55 64
60 60
5
50 57 50 44
40 2 40 2
33
30 30
7
20 20 16
10 10
Layer-wise Layer-wise LoRA (MSA) LoRA (MALI) GPT-3.5(IB) |[GPT-3.5 SOTA Layer-wise Layer-wise LoRA (MSA) LoRA (MALI) GPT-3.5(IB] GPT-3.5(MV) | Random
(MSA) (MALI) (MV) (MSA) (MALI) - >
I Precision (%) Recall (%) e==@==F1(%) N I Precision (%) _ Becall(%) ==@==F1(%)
-
~ -
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Prompting is better than
finetuning in both cases

20

Introduction Problem Formulation Approach




RQ1: Quality s =

RQ1: How do the two LLM-based approaches differ when
compared to the ground truth?

Answer:
o The prompting method outperforms the fine-tuning method in both
datasets when comparing the F1 and precision.

o The performance gap increases when the training dataset
Is smaller (ACM CCS).
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RQ2: Consistency UL,

RQ2: What are the differences between the two LLM-based

approaches in generating consistent taxonomies?

WordNet Evaluation ACM CCS Evaluation
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RQ2: Consistency [T et

RQ2: What are the differences between the two LLM-based
approaches in generating consistent taxonomies?

WordNet Evaluation ACM CCS Evaluation
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Maximum spanning
arborescence achieves
full consistency
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RQ2: Consistency [T et

RQ2: What are the differences between the two LLM-based
approaches in generating consistent taxonomies?

WordNet Evaluation ACM CCS Evaluation
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Prompting with majority
voting still contains
some violations
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RQ2: Consistency houies, =

RQ2: What are the differences between the two LLM-based
approaches in generating consistent taxonomies?

Answer:
e Fine-tuning methods produce fully consistent taxonomies with the
MSA post-processor.

e Taxonomies generated by the prompting approaches
still violate some constraints
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Research Questions:

«.ss RQ1: How do the two LLM-based approaches Training data
differ when compared to the ground truth? is not Combine
large enough g@bpost—processing
7+ and prompting
Te'sts ap[l)ear
RQZ. What are the differences between the @ tlrgihl-cljvelzfa .. .Extend to graph
two LLM-based approaches in generating 5, With mulcple
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