Prompting or Fine-tuning? A Comparative Study of Large Language Models for Taxonomy Construction

Boqi Chen¹, Fandi Yi¹, Daniel Varro^{1,2}

¹Department of Electrical & Computer Engineering, McGill University ²Department of Computer and Information Science, Linköping University boqi.chen@mail.mcgill.ca, fandi.yi@mail.mcgill.ca, daniel.varro@liu.se

Background : Taxonomy

LINKÖPING

- Taxonomies represent hierarchical relations between concepts or entities.
- Taxonomies are important in software • engineering
 - domain modeling.
 - object-oriented languages. 0
 - semantic web applications. 0
 - **Taxonomy construction** is identifying the hierarchical relations between set of concepts
 - **parent-child:** generalization
 - inclusion relations: composition 0

Background: Large Language Model (LLMs)

- Large language models (LLMs) are natural language processing methods for text generation
- For a sequence of input tokens (prompt), LLMs estimate the **probability** of the **next token**
- There are **two** methods for using pre-trained LLMs:
 - **Fine-tuning**: adapt with a task specific dataset
 - **Prompting:** provide instructions and examples as input for the task

Evaluation

3

Motivation: Explore LLM for Taxonomy

Motivation: Explore LLM for Taxonomy

Main question:

If some training data is available, which methods are more **effective and consistent** for taxonomy construction? **Prompting or Fine-tuning**?

Objective

We present a comparative study using LLMs for taxonomy construction

Problem Formulation

Given a set of concepts and constraint, create a taxonomy follows the constraints

Approach Overview

Approach Overview

9

Approach Overview

Relation Prediction

Relation Prediction

Relation Prediction: Prompt

You are an expert constructing a taxonomy from a list of concepts. Given a list of concepts, construct a taxonomy by creating a list of their parent-child relationships.

Concepts: network architectures; network design principles; naming and addressing; programming interfaces; layering Relationships: layering **is a** network design principles; naming and addressing **is a** network design principles;...

Repeat for N examples

Few-shot Prompting

Concepts: machine learning, learning paradigms, supervised learning, unsupervised learning, cross validation. Relationships: Test Input

Examples

Post-processing

Post-processing

Research Questions:

RQ1: How do the two LLM-based approaches differ when compared to the **ground truth**?

RQ2: What are the differences between the two LLM-based approaches in generating **consistent taxonomies**?

Introduction

16

Dataset

WordNet: A hypernym taxonomy (general English language concepts)

- **14,477** unique terms with **14,877** pairs
- 761 taxonomies
- **11 to 50** terms for each taxonomy

ACM CCS: newly created taxonomies in computer science derived from ACM Computing Classification System (CCS)

- **1846** unique terms with **1858 pairs**
- **75 taxonomies**
- 3 to 88 terms for each taxonomy

RQ1: Quality

RQ1: How do the two LLM-based approaches differ when compared to the ground truth?

RQ1: Quality

19

RQ1: How do the two LLM-based approaches differ when compared to the ground truth?

RQ1: Quality

RQ1: How do the two LLM-based approaches differ when compared to the ground truth?

RQ1: How do the two LLM-based approaches differ when compared to the **ground truth**?

Answer:

- The **prompting method outperforms** the fine-tuning method in both datasets when comparing the **F1 and precision**.
- The performance **gap increases** when the **training dataset is smaller** (ACM CCS).

RQ2: Consistency

22

RQ2: What are the differences between the two LLM-based approaches in generating **consistent** taxonomies?

RQ2: Consistency

RQ2: What are the differences between the two LLM-based approaches in generating **consistent** taxonomies?

RQ2: Consistency

100% 90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

RQ2: What are the differences between the two LLM-based approaches in generating **consistent** taxonomies?

24

RQ2: What are the differences between the two LLM-based approaches in generating **consistent** taxonomies?

Answer:

- Fine-tuning methods produce fully consistent taxonomies with the MSA post-processor.
- Taxonomies generated by the prompting approaches still violate some constraints

Discussion and Open Questions

Approach Selection: **Prompting** is a powerful tool and outperform finetuning

Taxonomy Consistency: LLM alone does not guarantee consistency, constraints need to be considered explicitly

Conclusion

