Embedding-based Automated Assessment of Domain Models

Kua Chen
McGill University
Montreal, Quebec, Canada

Gunter Mussbacher
McGill University
Montreal, Quebec, Canada

ABSTRACT

Domain modeling is an essential component in many software
engineering courses since it serves as a way to represent and under-
stand the concepts and relationships in a problem domain. Course
instructors evaluate student-generated diagrams manually, com-
paring them against a reference solution and providing feedback.
However, as enrollment in software engineering courses continues
to rise, manual grading of a large number of student submissions
becomes an overwhelming and time-intensive task for instructors.
Hence, there is a need for automated assessment of domain models
which assists course instructors during the grading process. In this
paper, we propose a novel text embedding-based approach that au-
tomatizes the assessment of domain models expressed in a textual
domain-specific language, against reference solutions created by
modeling experts. Our algorithm showcases remarkable proficiency
in matching model elements across domain models, achieving an
Fi-score of 0.82 for class matching, 0.75 for attribute matching,
and 0.80 for relation matching. Our algorithm also yields grades
highly correlated with human grader assessments, with correlations
exceeding 0.8 and mean absolute errors below 0.05.

CCS CONCEPTS

« Social and professional topics — Student assessment; « Soft-
ware and its engineering — Designing software.

KEYWORDS
Domain modeling, text embeddings, domain model assessment

ACM Reference Format:

Kua Chen, Boqi Chen, Yujing Yang, Gunter Mussbacher, and Déniel Varré.
2024. Embedding-based Automated Assessment of Domain Models. In
ACM/IEEE 27th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS Companion "24), September 22-27, 2024, Linz,

*Also with McGill University.

Partially supported by the FRONT-B2X project (file number: 319955), IT30340 Mi-
tacs Accelerate, and the Wallenberg Al, Autonomous Systems and Software Program
(WASP), Sweden.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687774

Boqi Chen
McGill University
Montreal, Quebec, Canada

Yujing Yang
McGill University
Montreal, Quebec, Canada

Daniel Varro*
Linképing University
Linkoping, Sweden

Austria. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3652620.
3687774

1 INTRODUCTION

Context and Motivation. Domain modeling is a core process in
software engineering that builds a domain model in the form of a
class diagram from various sources of information, such as docu-
ments and stakeholder interactions. Software engineering students
usually learn domain modeling by interpreting textual problem de-
scriptions and manually building a domain model by incrementally
combining model elements. Typically, the course instructor creates
areference domain model, against which each student submission is
graded. The grading process is usually a matching process. Course
instructors attempt to identify the occurrence of model elements
in the reference model within the student’s model. As the number
of students in software modeling courses increases, the grading
becomes an overwhelming workload for course instructors.

Another motivation for automated domain model assessment
is to facilitate research progress in domain modeling. Currently,
most researchers need to manually evaluate the domain models
generated from their proposed techniques. Such manual evaluation
is time-consuming and highly dependent on human expertise. This
problem becomes more challenging when large language models
(LLMs) are used for automated domain modeling [7, 8]. Researchers
still have to evaluate the generated domain model manually due to
a lack of a proper automated assessment approach. This hinders
the research progress in exploring the modeling ability of LLMs.

Objectives. In this paper, we aim to address the problem of fully
automated domain model assessment. For that purpose, we propose
an end-to-end domain model assessment algorithm, which does
not require any human interaction or supervised training.

Contribution. Given two domain models, we present a novel
approach for fully automated domain model assessment using text
embeddings and graph comparison techniques. The specific contri-
butions of this paper are the following:

e We formulate the domain model comparison problem as a
model element matching problem and propose a fully auto-
mated model assessment pipeline

e We propose an automated match comparison workflow to
assess the performance of our approach.

e We provide a new data set of 20 real student submissions for
evaluating automated domain model assessment. The data
set includes detailed matching information.

e We conduct an experiment using 20 real student solutions to
analyze the precision, recall, and F;-scores of our algorithm.

https://orcid.org/0009-0002-7491-7084
https://orcid.org/0000-0002-1451-3603
https://orcid.org/0009-0003-4092-0493
https://orcid.org/0009-0006-8070-9184
https://orcid.org/0000-0002-8790-252X
https://doi.org/10.1145/3652620.3687774
https://doi.org/10.1145/3652620.3687774
https://doi.org/10.1145/3652620.3687774

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Added Value. Our novel algorithm aims at fully automating
the assessment of domain models by matching model elements
and deriving reliable grades for domain models, thus reducing the
time and effort needed for human assessment. Our approach has
the potential to make grading tasks and modeling research more
efficient, providing a robust tool for both academic and industrial ap-
plications. Moreover, unlike in other machine learning approaches,
the integrated text embeddings do not require training, while they
can also handle more cases compared to rule-based approaches.
Moreover, text embeddings can be easily substituted with more
effective text embeddings, which has a direct impact on grading
performance.

2 BACKGROUND

Domain Model Representation. In this paper, we focus on de-
veloping an algorithm built upon the domain model representation
proposed in existing work on automated domain modeling [8]. The
textual representation of two partial domain models from a smart
home domain is shown in Table 1, including classes with attributes,
enumerations with literals, and relations with multiplicities. These
models will be used to explain the key concepts of our approach.

Table 1: Snippet of smart home domain models

Reference Model
Enumerations:
CommandStatus (Requested, Completed, Failed)
Classes:
ControlCommand (CommandStatus commandStatus)
ActuatorDevice ()
Relations:
0.* ControlCommand associate 1 ActuatorDevice

Candidate Model
Enumerations:

Status (Requested, Completed, Failed)
Classes:
ControlCommand (Status status)
Actuator ()

Relations:

0.” ControlCommand associate 1 Actuator

Word Embeddings. Word embeddings represent individual
words in a fixed-dimension vector space so that computers can
understand them. The word embedding used in this paper is trained
using Skip-gram [15], which is a well-known word embedding
method. Given a word, a neural network is trained to predict the
surrounding words. The training objective of a Skip-gram model
is to find word representations that are useful for predicting the
surrounding words in a sentence [15]. Let us define a window size of
¢ and center word w;. This means there are ¢ words on the left and
right of wy, i.e, W = [wi—c...Wt—1, Wr, Wrg1...Wrse|. The objective
of the Skip-gram model is to maximize the average log probability:

T

—_— >

t=1 —c<j<c,j#0

log p(wrsj|we) 1

where T is the total number of the vocabulary and p(wgj|we)
means the probability of observing word wy, j given the center word
w;. This probability is often modeled using the softmax function:
ulT “u
e “wo ™I
p(wolwr) = —————— @
Zz‘;/:l et wo OWI

Chen et al.

where uand u’ are vector representations of words. Skip-gram meth-
ods were pre-trained on general text sources like Wikipedia. Thus,
when applying them to a specific domain, they may misinterpret
some words. In 2023, Hernandez et al. [14] applied Skip-gram meth-
ods with a large corpus of modeling texts and released WordE4MDE
(Word Embeddings for MDE), which we use in this work.

Sentence Embeddings. Sentence embedding refers to the pro-
cess of representing an entire sentence as a fixed-size vector. A
very popular contextual sentence embedding is pre-trained model
embedding, typically empowered by transformer models like BERT
(Bidirectional Encoder Representations from Transformers) [13]
and GPT (Generative Pre-trained Transformer) [16]. For the BERT
model, the classification token is prepended to the input when a
sequence of tokens is fed into it. These models are typically trained
to ensure that semantically similar sentence pairs have embeddings
that are close to each other and dissimilar pairs have embeddings
that are far apart. The output representation of the classification
token is used as the aggregated representation of the entire input
sequence. For GPT models, the last token in the sequence is used
as the sentence representation.

Cosine Similarity. Cosine similarity is measured by the cosine
of the angle between two vectors and determines to what extent two
vectors are pointing in the same direction [12]. Cosine similarity is
often used in data analysis to measure two items’ similarity. It is also
applied in the model-driven engineering (MDE) field [19]. Given a
properly trained embedding method, the embedding of texts that
share similar meanings will have a larger cosine similarity value.
Let us define n-dimensional vectors A and B. The cosine similarity
is calculated:

Y AiB;

A-B
lAlBI [sm Az
where A; and B; are the values at the i-th dimension and ||A|| and
||B|| represent their norms. 6 is the angle between A and B.

Graph Similarity Measures. A simple graph is defined as a set
of vertices V and a set of edges E that connect pairs of vertices [18].
Two graphs can have different ordering of vertices and edges but
the same underlying structure, leading to the idea of graph isomor-
phism. Two graphs are isomorphic if there exists a function f from
the vertices of G; to the vertices of Gz (i.e., f : V(G1) — V(Gy)),
such that: (1) f is a bijection, and (2) for any two connected vertices
u and v of Gy, the connectivity also exists in G for f(u) and f(v).
Eg1(u,0) = Ega(f(w), f(0)).

The concept of graph isomorphism determines whether two
graphs have the same structure. Therefore, a widely used metric
for graph similarity is the minimum graph edit distance (GED).
The minimum GED of two graphs is defined as the minimum cost
of an edit path between them, where an edit path is a sequence
of edit operations (inserting, deleting, and relabeling vertices or
edges) that transforms one graph into another [9]. GED has been
utilized for evaluating UML class diagrams [22]. Mathematically,
the problem of finding the minimum GED can be defined as follows:

cosine similarity (A, B) = cos(0) =

k
GED(g1,92) = min c(e:) @
g1 92 (e1,ex) €P(g1.92) Z !

i=1

where P (g1, g2) represents the sequence of edit paths transforming
g1 into an isomorphic graph as gz, and c(e) is the cost associated
with each graph edit operation e.

Embedding-based Automated Assessment of Domain Models

3 METHOD

The essence of our approach (shown in Figure 1) is matching model
elements between a candidate model and a (human) reference
model to evaluate the quality of candidate models and then assign
a grade calculated from statistical results of the matching. After a
Pre-processing Stage, our approach consists of four main technical
stages, Stage 1 for class matching, Stage 2 for attribute matching,
Stage 3 for relation matching, and Stage 4 for computing statistical
results. After Stage 4, the Grading Stage computes a final grade.

At the Pre-processing Stage, the algorithm takes two domain
models represented in our domain-specific language and introduces
nested hash maps to keep track of the status of each model element
from the two models, including their matching information. As each
following stage matches model elements between the candidate and
reference models based on graph similarity measures, the nested
hash maps eventually contain element matches and matching scores
for calculating precision, recall, and Fi-score of each kind of model
element (classes, attributes, and relations).

[Reference Model] [Candidate Model]

l Pre-processing]

v
Stage 1: Class Matching
Stage 1.1: Class matching for| Stage 1.2: Class matching
each type enum/regular with all information

v
Stage 2: Attribute
Stage 2.1: Attribute matching Stage 2.2: Attribute matching
(between matched classes) (between any classes)
T

A 4
Stage 2.3: Attribute matching Stage 2.4: Attribute Matching
(atr to cls) (cls to atr)

v
Stage 3: Relation Matchin
Stage 3.1: Inheritance Stage 3.2: Association /
matching composition matching

Y
’ Stage 4: istical Result ‘

[Precision | [Recall | [Fq-score |

v
[Grading]

Figure 1: Overview of the proposed algorithm

3.1 Stage 1: Class Matching

Stage 1 focuses on matching classes between the candidate model
and the reference model. This process starts with calculating the
class embeddings. The embedding of a class is derived from the
embeddings of its class name, attributes, and relations. The next step
is calculating pair-wise cosine similarities between classes based
on the class embeddings. Then the algorithm identifies matches
between two sets of classes that minimize the cost of matches. In
practice, to solve this set-matching problem, our algorithm converts
domain models into two trivial graphs (graphs without edges).
It computes the minimum GED from the candidate graph to the
reference graph where the cost of each operation is derived from the
similarity score between matched graph elements. This stage can be
divided into two smaller stages: matching classes of the same type
and matching classes of any type with all available information.
Stage 1.1: Class Matching within Types. Stage 1.1 focuses on
matching classes based on names and attributes within the same
type. There are three types of classes: regular, abstract, and enumera-
tion classes. In the MDE context, regular and abstract classes are con-
ceptually similar. Therefore, we group regular and abstract classes
into one matching pool and treat enumeration classes in another. In
our running example from Table 1, [CommandStatus] and [Status]

MODELS Companion "24, September 22-27, 2024, Linz, Austria

are grouped. Furthermore, [ControlCommand, ActuatorDevice] is
grouped for matching with [ControlCommand,Actuator].

To compare classes, two types of embeddings are calculated:
(1) Class-name-only and (2) Class-name-with-attributes. For the
class-name-only embeddings, words in the name of the class are
extracted. Then, the embedding is calculated as the average word
embeddings. For the second type, attribute embeddings are calcu-
lated similarly to class names. The final embedding is the average of
class name and attribute embeddings. Then, pair-wise similarities
between classes can be calculated based on cosine similarity.

Cosine Similarities. We calculate the class-name-only and
class-name-with-attributes cosine similarities separately between
each pair of classes in the reference model and candidate model
based on their respective class embeddings. A weighted average is
applied to the two types of embeddings to combine the similarity
scores from class-name-only embeddings and class-name-with-
attributes embeddings for aggregation.

Function match_classes. This function matches classes with
cosine similarities and GED. It requires inputs including a list of
reference class names, a list of candidate class names, a hash map
where cosine similarities are stored, and a float parameter for thresh-
old. At the beginning, two graphs are initialized. One contains
vertices representing reference classes and the other contains ver-
tices representing candidate classes. This function finds the optimal
graph edit distance between the two graphs. Since both graphs only
contain vertices, possible graph edit operations include vertex inser-
tion, deletion, and substitution. The cost of insertion and deletion is
set to one by default, whereas the cost of substitution is defined as
1 - cosine similarity. The intuition behind this is to match vertices
with high similarities. The optimal graph edit distance includes a list
of operations with the lowest cost. With a good embedding method,
similar class pairs have high cosine similarities. Therefore, high-
similarity vertex pairs have low cost and they are more likely to get
matched. For instance, the cost of matching ActuatorDevice with
Actuator is only 0.111, whereas matching with ControlCommand
costs 0.631, hence ActuatorDevice will be matched with Actuator.
The threshold parameter of 0.5 is used to filter some class pairs
with low similarity values. If the similarity is lower than the thresh-
old, the substitution cost will be adjusted to a large value. This
prevents matching low-similarity class pairs. Overall, this function
optimizes the vertex edit operation sequence transforming one
graph to the other graph with the lowest cost. It eventually returns
class matches like: [(CommandStatus, Status), (ControlCommand,
ControlCommand), (ActuatorDevice, Actuator)]. Suppose there
is another reference enumeration class called CommandType. Since
there is no corresponding candidate class, it will not be matched,
i.e., resulting in (CommandType, None).

Stage 1.2: Class Matching with All Information. Stage 1.2
matches leftover classes in the candidate model and the reference
model from the previous stage using all available information, in-
cluding relations. For each leftover class, we gather its raw textual
class representation, along with all associated relations. Sentence
embeddings can capture the directionality in relations. Thus we
employ sentence embedding techniques to transform this represen-
tation into a vector as the class embeddings. Next, we use the class
embeddings to calculate the pair-wise cosine similarities between
the reference and candidate classes. The same matching algorithm

MODELS Companion "24, September 22-27, 2024, Linz, Austria

is used to match these classes by using the pairwise similarity cal-
culated from the sentence embedding. This function matches input
classes and returns class matches.

Score Assignment. Our algorithm assigns a score to each ele-
ment in the matches. For both Stage 1.7 and Stage 1.2, the algorithm
checks whether class matches possess the same type (enumeration,
regular, or abstract) after finding them from the match_classes
function. If both classes in a class match have the same type, they
are assigned a score of one. Otherwise, the score is set to 0.5.

3.2 Stage 2: Attribute Matching

In Stage 2, the algorithm focuses on matching the attributes between
the reference and candidate models. Leftover classes from previous
stages are also considered for matching attributes in later stages.
This stage is further divided into four sub-stages:

e Stage 2.1 Attribute matching between matched classes

e Stage 2.2 Attribute matching between any classes

o Stage 2.3 Reference attribute to candidate class matching
o Stage 2.4 Reference class to candidate attribute matching

Attribute matching follows a similar logic to class matching.

Stage 2.1: Attribute Matching Between Matched Classes.
In this stage, reference attributes and candidate attributes that are
in the matched classes are considered for matching. Therefore, the
first step is to get all the class matches from Stage 1. Then, we use
the match_attributes function to match attributes. For instance,
CommandStatus and Status have been matched from Stage 1. Then,
their enumeration literals are grouped for matching. Likewise, at-
tributes in reference class ControlCommand and candidate class
ControlCommand are considered for matching.

Function match_attributes. For each class match, the algo-
rithm collects reference attributes and candidate attributes in two
separate lists. Attributes are embedded for computing pair-wise
cosine similarities. Subsequently, the two lists and the cosine simi-
larities are passed to the match_attributes function to compute
attribute matching. This function is similar to the match_classes
function. Two graphs are initialized where vertices represent ref-
erence attributes and candidate attributes, respectively. The opti-
mal graph edit distance is computed with deletion and insertion
cost to be one and substitution cost to be 1 - cosine similarity. The
match_attributes function also returns a list of attribute matches.

Score Assignment. Our algorithm assigns matching scores to
each attribute in the returned matches. Each attribute includes a
type, e.g., int, string, or enumeration class. Sometimes there could
be an anti-pattern in the type. Therefore, our algorithm conducts
type checking on matched attributes in each pair with three rules:
(1) if any attribute type is a regular class or abstract class, mark
them as partially correct, (2) if both attribute types are enumeration
classes, mark them as correct. Otherwise, it is partially correct, and
(3) if both types are primitive, mark them as correct. Otherwise,
they are marked as partially correct. Attribute matches with correct
type checking gain scores of one. Otherwise, their scores are set to
0.5. A similar strategy is also used for Stage 2.2, with the maximum
score being 0.5 because attributes are in different classes.

Stage 2.2: Attribute Matching Between Any Classes. Some
attributes can be misplaced in incorrect classes but they can still
make sense to the overall modeling effort. Therefore, this stage

Chen et al.

focuses on matching leftover attributes without restricting their
source classes. The first task is getting unmatched reference at-
tributes and candidate attributes in two lists. We want to prioritize
matching attributes whose source classes are more similar. There-
fore, source classes are also collected in two lists. Next, two sets
of cosine similarity scores are calculated and stored in two nested
lists. One is class-to-class pair-wise cosine similarity, and the other
is attribute-to-attribute cosine similarity. Both types of similarity
are based on word embedding. A weighted average is used in com-
bining pair-wise attribute-to-attribute and class-to-class similarity
into one value. Once the combined cosine similarity is obtained,
they are passed to the match_attributes function for matching.

Stage 2.3: Reference Attribute to Candidate Class Matching.
This stage is intended to identify any match between a reference
attribute and a candidate class. Leftover reference attributes and
leftover candidate classes are collected into two separate lists. Two
sets of similarity scores are created, i.e., attribute-to-class and class-
to-class similarities, based on word embeddings. The class-to-class
similarity is the same as for the previous sub-stage. The attribute-to-
class similarities between the reference attributes and the candidate
classes are calculated. Reference attributes and candidate classes
are embedded with a word embedding approach and our algorithm
computes the pair-wise similarities between them. Then the algo-
rithm follows the same procedure of combining two similarities
lists into one hash map and then utilizes the match_attributes
function to match attributes to classes. For each match, since this
is an anti-pattern, the score is set to 0.5 only.

Stage 2.4: Reference Class to Candidate Attribute Match-
ing. In Stage 2.4, our algorithm finds a reference class matching a
candidate attribute. It is similar to Stage 2.3 whereas the class-to-
attribute similarity is calculated between leftover reference classes
and leftover attributes. The other steps are identical to Stage 2.3.

3.3 Stage 3: Relation Matching

In Stage 3, our algorithm matches relations based on class matches.
Relation matching is rule-based, which is different from class or
attribute matching. The algorithm iterates through all combinations
of relations from the candidate model and the reference model. For
each relation in the reference model, a list called matchings is
initialized. Then, for each relation in the candidate model, if both
relations are unmatched, a potential match is examined using the
compare_edges function. The matching is appended to the list of
matchings if it is a partial or exact match. After comparing all
possible combinations, the best match among the matches is found.

Function compare_edges. This function takes two relations
and tries to find an exact match (worth 1 point), a partial match
(0.5 points), or no match (0 points). There are three kinds of rela-
tions defined in our language: inherit, contain, and associate.
An inherit relation only consists of three elements: child class,
inherit, and parent class. Both associate and contain relations
consist of five elements: multiplicity 1, class 1, relation type, multi-
plicity 2, and class 2. Therefore, the input relations are classified
based on the number of elements. If both relations contain three
elements, they enter Stage 3.1 Inheritance matching. In this stage,
we check whether the second element is inherit. Meanwhile, we
check if the first elements in both relations have already been
matched in previous stages. The third elements are also checked to

Embedding-based Automated Assessment of Domain Models

confirm whether they have been matched. If all three conditions
are satisfied, an exact match between these two relations is estab-
lished. Meanwhile, if both relations contain five elements, they
enter Stage 3.2 Association/composition matching. An exact match
is found if and only if all the five elements match each other. If
the above exact match fails, the function ignores multiplicities and
types but only checks whether classes are matched. Consider the
reference relation * ControlCommand associate 1 ActuatorDevice
and candidate relation * ControlCommand associate 1 Actuator as
an example. ControlCommand is matched with ControlCommand.
ActuatorDevice is matched with Actuator. All the other elements
are also matched with their counterparts. This is an exact match. If
there were mismatches in multiplicities, it would be a partial match.

3.4 Stage 4: Statistical Results

In Stage 4, our algorithm calculates precision, recall, and F;-scores
for the assessed domain model. Following our previous work [8],
we use the same approach for calculating the statistics. For example,
let C be the set of all classes in the candidate model of size m = |C]|,
the precision of classes in the candidate model can be expressed as
Precisiong = @, (5)
m
where S; is the matching score € [0, 0.5, 1] for the i-th class.
Recall measures the degree of the reference model covered by
the candidate model. Let C be the set of classes in the reference
model of size n = |C|, the recall of classes can be expressed as
Recallg = ﬁ (6)
n
Finally, we use the classical F;-score definition:
_ 2 X Precisionc X Recallc

c
Fl

@)

Precisiong + Recallg

Metrics for attributes or relations can be computed by substituting
C with the set of attributes or relations.

3.5 Grading

A weighted average of F;-scores is used to produce the final grade

of the domain model:
We C Wa A Wr R

FC + F ®)
We + Wy + Wy we + Wg + Wy

grade = 1
We + Wg + Wy

where we, wg, and w, are weights for classes, attributes, and rela-
tions, respectively. FIC s Fiﬂ and F172 are the Fi-scores for classes,
attributes, and relations, respectively. Motivated by our real-world
grading practice, the final grade is calculated with weights w, = 4,
wg = 1,and w, = 1.

4 EVALUATION
4.1 Evaluation of Generated Matches

This section explains how to evaluate our algorithm by comparing
matches from our algorithm with matches from a human grader.
Comparison of Matches. For an assessed domain model, there
is a collection of matches produced by the algorithm. There is
another collection of matches produced by a human grader. Let
us define two lists of matches as M4 (algorithm matches) and My
(human matches). Each individual match: m; is reformulated in the
form of (element_name, counterpart, matching_score). The
first element in a match is always an element from the reference

MODELS Companion "24, September 22-27, 2024, Linz, Austria

model or None for consistency. For conciseness, we only present
the first two elements in the later description.

Labeling Strategy. Each match pair is classified as: true positive
TP, false positive FP, true negative TN, and false negative FN. We
focus on the first two elements in the match in Match Comparison,
and consider the matching score in Score Assignment.

Match Comparison. Let m = (a, b) be a match where a repre-
sents a model element from the reference model, and b represents a
model element from the candidate model (where one of them may
be None). Let m, denote a match from My and my, be a match from
Mp. Then we demonstrate all the situations of my, and m, pairs
and their evaluation labels as follows:

(1) (a,b) vs. (a,b). The human grader matches element a with
element b, and our algorithm also matches element a with
element b. This is a true positive (TP) with a score of 1.

(2) (a,b) vs. (a, None). Our algorithm matches element a with
nothing (i.e., None). However, a is supposed to be matched
with something (i.e., b). Therefore, we consider this as a false
negative (FN) with a score of 0.

(3) (a,b) vs. (a,c). Our algorithm matches element a with c.
However, a is supposed to be matched with another element
b. Thus, this is a false positive (FP) with a score of 0.

(4) (a, None) vs. (a,b). Our algorithm matches an unnecessary
element to a. This is a false positive (FP) with a score of 0.

(5) (a, None) vs. (a, None). Both the human grader and our al-
gorithm also match element a with nothing. Therefore, we
consider this as a true negative (TN) with a score of 1.

(6) (None,a) vs. (b,a). Same as (4) with an FP and a score of 0.

(7) (None,a) vs. (None, a). Same as (5) with a TN and a score of
1.

(8) (b, a) vs. (None, a). Same as (2) with an FN and a score of 0.

(9) (c,a) vs. (b,a). Same as (3) with an FP and a score of 0.

Score Assignment. For match pairs labeled as TP or TN, we
further examine whether the third element matching_score is
consistent in both matches. If they are consistent, a score of one is
assigned to the match pair. If not, a score of 0.5 is assigned.

Evaluation Workflow. With the labeling strategy, we proceed
to Step 1: Find TN and TP. This step is finding the intersection of
My and Mpy. For any pair of matches (mg, my) € (Mg, M), mq
and my, are considered if the first two elements of m, are identical
to the first two elements of my, i.e., mq, = mp, A mg, = mp,. After
finding a pair of identical matches, we need to determine if it is TP
or TN. If there exists None in this pair of matches, then this pair is
considered as TN. Otherwise, this pair is TP.

Next, we proceed to Step 2: Find FN and FP. At first, we focus on
Step 2.1 Leftover Human Matches, which is to find FN or FP in the
leftover Mpy. Step 2.1 can be further divided into two small steps. (1)
For each leftover human match my, with elements (a, b), we can try
to find an algorithm match m, with elements (a, x) where x # b.
This is finding an algorithm match based on the first element. (2) If
we cannot find such an mgj, then we shift our focus to the second
element and try to find an algorithm match m, with elements (x, b)
where x # a. For each match, we classify it into FP or FN.

There may still exist some leftover algorithm matches. Therefore,
In Step 2.2: Leftover Algorithm Matches. We apply the same strategy
as for Step 2.1 as described in the previous paragraph. Eventually, we

MODELS Companion "24, September 22-27, 2024, Linz, Austria

collect a list of match pairs with labels and calculate the precision,
recall, and Fi-score with the labeled match pairs.

4.2 Evaluation of Generated Statistics

We evaluate our algorithm by comparing the generated statistics
with those from human graders. Our algorithm provides statistics
including precision, recall, and F;-scores for each type of model
element, along with final grades. It should generate statistics that
are as close as possible to the statistics produced by human graders.
To evaluate the performance of our algorithm in generating mean-
ingful statistics, we apply the mean absolute error (MAE) metric.
An MAE close to 0 indicates that our algorithm is closely aligning
the results of human graders. Pearson correlation is another metric.
A correlation value approaching 1 indicates a strong alignment.

5 EXPERIMENTS

This section aims to evaluate our algorithm’s performance in assess-
ing domain models and identify areas of the matching and grading
task where our algorithm may encounter challenges. We aim to in-
vestigate the following research questions (RQ): (1) what is the per-
formance of our algorithm in matching a candidate domain
model to a reference model regarding classes, attributes, and
relations? and (2) to what extent does the algorithm-generated
grade compare with those produced by human grading or
other automated approaches?

5.1 Experimental Settings

We have chosen a modeling problem on the smart home domain
that was an assignment in an undergraduate-level modeling course.
The problem description and reference domain model are in the
supplementary material!. The assignment requires students to cre-
ate a domain model for a smart home automation system (SHAS)
that allows various users to automatically manage smart home au-
tomation tasks. There are 5 enumeration classes, 15 regular classes,
3 abstract classes, 13 enumeration literals, 13 attributes, and 32
relations in the reference domain model. We randomly select 20
student solutions. To establish the ground truth, one author of this
paper manually matches candidate models against the reference
model. To ensure fairness of the evaluation, the manual match is
done before having seen matches from the algorithm.

Our algorithm relies on some external libraries for embeddings
and graph comparison. We select sgram_mde (skip-gram for MDE)
from the WordE4MDE library as the word embedding method.
In terms of sentence embedding, we select one OpenAl embed-
ding model, text-embedding-ada-002, via the API provided by
OpenAl?. Calculating graph edit distance is also essential to our
algorithm. We use the Python library NetworkX [11] whose GED
algorithm is developed based on the work by Abu-Aisheh et al. [2].

5.2 RQ1: Matching Performance

RQ1 aims to evaluate how our algorithm performs in matching
model elements from the candidate model to elements from the
reference model. We carry out a more fine-grained analysis by
highlighting with which modeling aspects the algorithm struggles.

!https://github.com/ChenKua/Domain_Model_Elevation
Zhttps://platform.openai.com/docs/guides/embeddings/embedding-models

Chen et al.

Table 2: Average performance scores for matching

Metric Average + Standard Deviation

Precision 0.7425 + 0.1156

Class Recall 0.9332 + 0.0587
Fi-score 0.8239 + 0.0873

Precision 0.7274 £ 0.1318

Attribute Recall 0.7861 + 0.1265
Fj-score 0.7456 + 0.1067

Precision 0.8556 + 0.1492

Relation Recall 0.7628 + 0.1847
F}-score 0.7958 + 0.1505

Particularly, we compare the performances of the algorithm when
matching classes, attributes, and relations.

The performance scores in Table 2 compare the matching results
generated by our algorithm with human-generated matches of 20
student submissions. Our algorithm excels in class matching (F;-
score of 0.8239), surpassing those for attribute matching (0.7456)
and relation matching (0.7958). Notably, the F;-score for attribute
matching is the lowest among the three element types. The preci-
sion of relation matching is the highest among the three, while the
recall of class matching highly surpasses those of the other two.
Based on the trend of Fj-scores, it can be inferred that our algo-
rithm excels in matching classes compared to matching relations
and it performs better in matching relations than in matching at-
tributes. Additionally, the recall for matching classes and attributes
is higher than their respective precision, while the phenomenon
is reversed for matching relations. Class matching and attribute
matching share a similar logic, whereas relation matching is rule-
based with dependency on class matching. Relation matching relies
on class matching, which might be why relation matching has
higher precision than recall.

Answer to RQ1. While our algorithm demonstrates impres-
sive capability in matching model elements, there is still room for
performance improvement. Our algorithm achieves F;-scores of
0.82 for class matching, 0.75 for attribute matching, and 0.80 for
relation matching. Moreover, our algorithm struggles the most with
matching attributes (compared to classes and attributes).

5.3 RQ2: Grading Performance

Our algorithm produces a set of statistics as numerical assessments
for each assessed domain model. RQ2 seeks to explore whether
these statistics can serve as meaningful grades for evaluated domain
models. We aim to investigate the extent to which our algorithm
is capable of generating statistics that reasonably approximate the
ground truth values for grades. There are two types of comparison:
internal comparison and external comparison.

RQ2.1: Internal Comparison. In RQ2.1, we conduct an internal
comparison on algorithm-generated precision, recall, Fi-scores, and
grades. Table 3 shows the mean absolute error (MAE) between pre-
cision, recall, and F;-scores generated from our algorithm compared
with the same metrics from a human grader. The MAE consistently
remains below 0.05, which is 5% in terms of percentage. In many
universities, a 5% grading scale range is commonly used for un-
dergraduate course assessments. For example, an A- is typically
assigned to numerical grades ranging from 80% to 85%. Our algo-
rithm combines three Fi-scores through weighted averaging to
derive the final grade. Employing identical weights as those utilized
in our algorithm, we compute the weighted average of F;-scores
from human graders, thereby establishing them as the ground-truth

https://github.com/ChenKua/Domain_Model_Elevation
https://platform.openai.com/docs/guides/embeddings/embedding-models

Embedding-based Automated Assessment of Domain Models

Table 3: The Mean Absolute Error (MAE) and Pearson Corre-
lation between algorithm-generated data and human grading

Metric MAE Correlation
Precision | 0.04923 0.8146
Class Recall 0.04130 0.9418
Fi-score 0.04507 0.8702
Precision | 0.04723 0.8702
Attribute Recall 0.04712 0.9193
Fi-score 0.04427 0.8439
Precision | 0.04110 0.8272
Relation Recall 0.02891 0.8306
Fi-score | 0.03397 0.8006
Grade 0.03096 0.8714

Fj-based grades. Consequently, we calculate the MAE between the
algorithm-generated grades and the ground truth F;-based grades,
as shown in the final row of Table 3. This computed MAE stands
at 0.03096, indicating a small deviation. The Pearson correlation
between metrics derived from our algorithm and those from human
graders is computed and exhibited in the last column of Table 3. All
correlation coefficients surpass 0.8, indicating a robust correlation
between metrics generated by our algorithm and those by humans.

Answer to RQ2.1. Our algorithm excels in accurately evaluat-
ing domain models, demonstrating precision, recall, Fj-scores, and
grades that closely align with the human grading. Across all met-
rics, the Mean Absolute Error (MAE) remains consistently below
0.05 (i.e., within one letter grade range), accompanied by strong
correlations exceeding 0.8.

RQ2.2: External Comparison. RQ2.2 evaluates how the grade
produced by our algorithm approximates the grades from an exist-
ing external benchmark from Singh et al. [20]. Modeling grades in
this benchmark are produced by domain modeling experts. We com-
pare our algorithm-generated grades with the same set of domain
model grading results in the benchmark. The largest difference in
numerical grades (absolute error) among the domain model assess-
ments is 0.1317, while the smallest difference is 0.004. The resulting
MAE of 0.0456 is deemed reasonably small and falls within the
spectrum of a typical letter grade range. We also apply GPT-4-turbo
to grade the same set of student submissions, which results in an
MAE of 0.0674. Furthermore, we test another domain model assess-
ment approach in TouchCore [5], which fails to work on 20% of
submissions and yields an MAE of 0.2524 for the other 80% (with
weights of model elements adjusted to TouchCore’s settings). Our
algorithm improves MAE significantly compared to the other two
approaches. This indicates a reasonably close resemblance between
the grades generated by the algorithm and those given by human
graders, although there is still room for improvement.

Answer to RQ2.2. Our approach clearly outperforms the base-
line state-of-the-art auto-grading approach. It showcases its pro-
ficiency in producing meaningful precision, recall, F;-scores, and
grades for domain model assessments, which closely approximate
those of the external benchmark. The Mean Absolute Error (MAE)
between our data and the benchmark is 0.0456, indicating a differ-
ence of about 5 points out of 100.

5.4 Discussion

ROQ1. The experiments show that our algorithm is still not able to
match the model elements as well as a human grader. The results
obtained are promising but there is still room for improvement.
The results in RQ1 reveal that our algorithm struggles to match

MODELS Companion "24, September 22-27, 2024, Linz, Austria

attributes correctly. Meanwhile, class matching and attribute match-
ing, both suffer from low precision and high recall. This suggests a
higher percentage of false positives compared to false negatives in
the matches. One future direction can be reducing the false posi-
tives by defining more rule-based or embedding-based mechanisms
to identify None matches, i.e., (a, None).

RQ2. By addressing RQ2, we aim to provide insight into how grades
produced by our algorithm correlate with human grading. We have
observed that our algorithm’s outputs exhibit a high degree of
correlation with human grading values. Our algorithm also demon-
strates its effectiveness by generating meaningful precision, recall,
Fj-scores, and grades that closely align with the ground truth values
in both internal and external benchmarks, indicating its capabil-
ity to assess domain models accurately. While our algorithm still
cannot replace human graders, it produces explainable matches of
model elements, which may be a useful starting point for graders’
evaluations and a self-assessment tool for students in practice.

5.5 Threats to Validity

Internal Validity. The authors only construct a small matching
data set, which may introduce bias and insufficient statistical power.
We mitigate this bias by also comparing our algorithm outputs
against an external human-grading benchmark [20]. The selection
of scores for model elements and weights for F;-scores influences
the final grades. We choose the scores following our previous work
and select weights widely used to evaluate university-level assign-
ments. The algorithm’s outputs are evaluated using scores of {0, 0.5,
1}, which is commonly used in university grading settings. There
are numerous ways to represent a domain model. Following our
previous work, we apply the same model representation.

External Validity. There are benchmarks [20] for grading in
the automated domain model assessment research. However, to
the best of our knowledge, there are no benchmark data sets for
model element matching. Thus, one author of this paper curates
such a data set manually, leading to a higher risk of getting false
positives in the statistical tests. The scalability of the algorithm is
yet to be evaluated, especially considering the lower bound of the
used GED algorithm is O(n3). There may be risks with changes in
the OpenAI embedding models. To ensure reproducibility, we have
saved the embedding results of the model elements used in our
experiments. All experiments were conducted on English datasets,
which may affect the generalizability of our algorithm to other
language settings.

Construct Validity. Our paper adapts metrics widely used for
classification and numerical comparison [4, 8, 17, 20, 23].

6 RELATED WORK

Many approaches have been investigated to assess the candidate
model in comparison to the reference model. In general, they can
be divided into four categories.

Rule-based. Bien et al. [5] present an approach for automated
grading of UML class diagrams, which uses a grading algorithm
with syntactic, semantic, and structural matching between two
class diagrams. A metamodel was introduced to store mappings
and grades for mapping each model element, e.g., classes, attributes,
and associations so that it is possible to update the grading scheme
later on. Singh et al. [20] introduce a Mistake Detection System

MODELS Companion "24, September 22-27, 2024, Linz, Austria

(MDS) designed to identify errors and offer feedback to students by
comparing their submissions with a solution. This system is able to
detect a wide range of potential pre-defined mistakes (e.g., plural
class name violation) present in a submission. Model comparison
is a critical process in MDE, allowing developers to identify differ-
ences between various versions of models. EMFCompare is a tool
from the Eclipse Modeling Framework (EMF) that facilitates model
comparison and merge tasks by providing a comprehensive set
of functionalities for detecting and resolving differences [1]. EMF
Diff/Merge is another tool providing a lightweight, configurable
approach for model comparison and merging with GUI compo-
nents [10]. SiDiff is also a model comparison tool which also utilizes
the similarity of model elements for comparison [21].

Graph Matching,. Tselonis et al. [22] propose the idea of treating
various types of diagrams including UML class diagrams as graphs
and then using graph matching algorithms to measure the similarity
between such translated graphs. One of the matching algorithms
investigated by the authors is graph isomorphism, which involves
determining whether a diagram is either isomorphic to the refer-
ence answer or contains an isomorphic subgraph of it. Similarly,
Ludovic et al. [3] also apply a graph-matching approach for assess-
ing class diagrams. Their algorithm is based on graph-matching
techniques, using characteristic structural patterns depicted in dia-
grams. Similarity functions compare these structures, generating
similarity scores for each pair. The algorithm categorizes matches
into univalent and multivalent based on a taxonomy of differences.

Machine Learning. Boubekeur et al. [6] propose an approach
based on a simple heuristic and machine learning that helps cate-
gorize simple domain model submissions from students according
to their quality. The system determines if submissions are above a
quality threshold to assign them a letter grade.

Our approach combines rule-based, graph matching, and ma-
chine learning to produce a score for candidate models based on
different metrics such as precision, recall, and F;-score. It is more
flexible and considers semantics by using text embeddings com-
pared to rule-based approaches. No training is required for text
embeddings. It is also more scalable compared to graph matching
and taking attributes, and class names into consideration.

7 CONCLUSION

This paper introduces a novel algorithm for fully automated domain
model assessment utilizing text embeddings and graph comparison
techniques. The algorithm automatically matches model elements
between a candidate and reference model, subsequently generating
a grade for the candidate model without human intervention. Our
experiments indicate that although the proposed algorithm exhibits
impressive performance in matching model elements and scoring
domain models, there remains potential for enhancement. In fu-
ture work, we aim to leverage the explainable matches to generate
human-readable feedback that is both meaningful and immediate,
thereby enhancing the learning experience for students.

REFERENCES

[1] 2024. EMF Compare. https://eclipse.dev/emf/compare/. Accessed: 2024-06-30.

[2] Zeina Abu-Aisheh, Romain Raveaux, Jean-Yves Ramel, and Patrick Martineau.
2015. An Exact Graph Edit Distance Algorithm for Solving Pattern Recognition
Problems. In Proceedings of the International Conference on Pattern Recognition Ap-
plications and Methods - Volume 1 (Lisbon, Portugal) (ICPRAM 2015). SCITEPRESS

—_
&

[10

[11

[12

(13

[15

[16

(17

(18

[19

[20

[21

[22

[23

]

]

]

]

]

Chen et al.

- Science and Technology Publications, Lda, Setubal, PRT, 271-278.

Ludovic Auxepaules, Dominique Py, and Thierry Lemeunier. 2008. A Diagnosis
Method that Matches Class Diagrams in a Learning Environment for Object-
Oriented Modeling. In Proceedings of the 2008 Eighth IEEE International Conference
on Advanced Learning Technologies (ICALT "08). IEEE, USA, 26-30.

Viv Bewick, Liz Cheek, and Jonathan Ball. 2003. Statistics review 7: Correlation
and regression. Critical care 7 (2003), 1-9.

Weiyi Bian, Omar Alam, and Jérg Kienzle. 2021. Automated grading of class
diagrams. In Proceedings of the 22nd International Conference on Model Driven
Engineering Languages and Systems (Munich, Germany) (MODELS ’19). IEEE
Press, Munich, Germany, 700-709.

Younes Boubekeur, Gunter Mussbacher, and Shane McIntosh. 2020. Automatic
assessment of students’ software models using a simple heuristic and machine
learning. In Proceedings of the 23rd ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems: Companion Proceedings (Virtual Event,
Canada) (MODELS °20). Association for Computing Machinery, New York, NY,
USA, Article 20, 10 pages.

Meriem Ben Chaaben, Lola Burguefio, and Houari Sahraoui. 2023. Towards Using
Few-Shot Prompt Learning for Automating Model Completion. In Proceedings of
the 45th International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER °23). IEEE Press, Melbourne, Australia, 7-12.

Kua Chen, Yujing Yang, Boqi Chen, José Antonio Hernandez Lépez, Gunter
Mussbacher, and Daniel Varré. 2023. Automated Domain Modeling with Large
Language Models: A Comparative Study. In 2023 ACM/IEEE 26th International
Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE,
Visteras, Sweden, 162-172.

Xiaoyang Chen, Hongwei Huo, Jun Huan, and Jeffrey Scott Vitter. 2019. An
efficient algorithm for graph edit distance computation. Knowledge-Based Systems
163 (2019), 762-775.

Eclipse Foundation. 2024. Eclipse EMF Diff/Merge. https://projects.eclipse.org/
projects/modeling.emf.diffmerge. Accessed: 2024-06-30.

Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

Jiawei Han, Micheline Kamber, and Jian Pei. 2012. 2 - Getting to Know Your Data.
In Data Mining (Third Edition) (third edition ed.), Jiawei Han, Micheline Kamber,
and Jian Pei (Eds.). Morgan Kaufmann, Boston, 39-82.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert:
Pre-training of deep bidirectional transformers for language understanding. In
Proceedings of naacL-HLT, Vol. 1. Association for Computational Linguistics,
Minneapolis, MN, USA, 2.

José Antonio Hernandez Lopez, Carlos Dura, and Jesus Sanchez Cuadrado. 2023.
Word Embeddings for Model-Driven Engineering. In 2023 ACM/IEEE 26th Interna-
tional Conference on Model Driven Engineering Languages and Systems (MODELS).
IEEE, IEEE, Visteras, Sweden, 151-161.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013), 1-9.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. 2019. Language models are unsupervised multitask learners. OpenAlI blog
1,8 (2019), 9.

Rijul Saini, Gunter Mussbacher, Jin L. C. Guo, and Jorg Kienzle. 2022. Ma-
chine Learning-Based Incremental Learning in Interactive Domain Modelling.
In Proceedings of the 25th International Conference on Model Driven Engineering
Languages and Systems (Montreal, Quebec, Canada). ACM, New York, NY, USA,
176-186.

Robert Sedgewick and Michael Schidlowsky. 2003. Algorithms in Java, Part 5:
Graph Algorithms (3 ed.). Addison-Wesley Longman Publishing Co., Inc., USA.
Oszkar Semerath, Rebeka Farkas, Gabor Bergmann, and Daniel Varré. 2020.
Diversity of graph models and graph generators in mutation testing. International
Journal on Software Tools for Technology Transfer 22 (2020), 57-78.

Prabhsimran Singh, Younes Boubekeur, and Gunter Mussbacher. 2022. Detecting
mistakes in a domain model. In Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems: Companion Proceedings (Mon-
treal, Quebec, Canada) (MODELS °22). Association for Computing Machinery,
New York, NY, USA, 257-266.

Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. 2007. Difference
computation of large models. In Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering (Dubrovnik, Croatia) (ESEC-FSE "07).
Association for Computing Machinery, New York, NY, USA, 295-304.

Christos Tselonis, John Sargeant, and Mary McGee Wood. 2005. Diagram Match-
ing for Human-Computer Collaborative Assessment. In Proceedings of the 9th
International Computer Assisted Assessment Conference. Loughborough University,
UK, 1-15.

Cort] Willmott and Kenji Matsuura. 2005. Advantages of the mean absolute
error (MAE) over the root mean square error (RMSE) in assessing average model
performance. Climate research 30, 1 (2005), 79-82.

https://eclipse.dev/emf/compare/
https://projects.eclipse.org/projects/modeling.emf.diffmerge
https://projects.eclipse.org/projects/modeling.emf.diffmerge

	Abstract
	1 Introduction
	2 Background
	3 Method
	3.1 Stage 1: Class Matching
	3.2 Stage 2: Attribute Matching
	3.3 Stage 3: Relation Matching
	3.4 Stage 4: Statistical Results
	3.5 Grading

	4 Evaluation
	4.1 Evaluation of Generated Matches
	4.2 Evaluation of Generated Statistics

	5 Experiments
	5.1 Experimental Settings
	5.2 RQ1: Matching Performance
	5.3 RQ2: Grading Performance
	5.4 Discussion
	5.5 Threats to Validity

	6 Related Work
	7 Conclusion
	References

