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Introduction



Domain Modeling

Domain modeling 

• Captures relations between different entities of a domain

• Is a core concept for in software engineering 

practice and education

• An active research field for automated generation

• In both cases, a large amounts of assessments against a 

reference solution are required!
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Domain Model Assessment
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How good is the student solution?
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Domain Model Assessment

Rule-based method?

• Hard to generalize
• Manual effort
• Error-prone
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Domain Model Assessment

Large language models (LLMs)?

• Hallucination
• No explanation
• Can we trust it?
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Text Embeddings

● Represent words in a fixed-dimension vector

● Predicting the surrounding words in a sentence

● Trained on modeling corpus

● e.g., embed(‘model’) = [0.15, 0.28, 0.123, …]

● Represent a sequence of words in a fixed-dimension vector 

● Captures the relations of words in the sentence

Word Embedding: Skip-gram MDE

Sentence Embeddings: text-embedding-ada-002
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Cosine Similarity 

● Cosine similarity measures the similarity between two vectors

● It can be used to measure the similarity between text embeddings
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Graph Similarity Measures

● Graph isomorphism

○ Determine if two graphs have the same underlying structure 

● Graph edit distance (GED)

○ The minimum cost of an edit path to transforms one graph 

isomorphic to the other

○ Edit path: a sequence of edit operations (inserting, deleting, and 

relabeling vertices or edges)
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Our approach

Relation matching: 

Graph matching 
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Method



Overview

1. Class match

1.1 Within type

1.2 All info 

2. Attribute 
match

3. Relation 
match

4. Assessment 
score
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Stage 1: Class Matching

• Match classes based on class names and attributes with word embeddings

• Match classes based on class names and attributes and relations with 

sentence embeddings

1. Class match

1.1 Without 
relation

1.2 With 
relation

2. Attribute 
match

3. Relation 
match

4. Assessment 
score
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Stage 2: Attribute Matching

● Similar logic to class matching

● Stage 2.1 Attribute matching between matched classes

● Stage 2.2 Attribute matching between any classes

● Stage 2.3 Reference attribute to candidate class matching

● Stage 2.4 Reference class to candidate attribute matching

Compute 

embeddings Pairwise similarity

Graph edit 

distance
Matched elements

1. Class match

1.1 Within type

1.2 All info 

2. Attribute 
match

3. Relation 
match

4. Assessment 
score

Experiment: RQ2 ConclusionIntroduction Experiment: RQ1Method

14



Stage 3: Relation Matching

● Different logic from class matching or attribute matching

● Relation (R) = multiplicity 1, class 1, relation type, multiplicity 2, class 2

● A candidate relation R1 is matched with the reference R2 if

○ classR1 = classR2  (from the class match)

○ relation typeR1 = relation typeR2

○ multiplicityR1 = multiplicityR2

● An Example of perfect match:

* ControlCommand associate 1 ActuatorDevice

* ControlCommand associate 1 Actuator

1. Class match

1.1 Within type

1.2 All info 

2. Attribute 
match

3. Relation 
match

4. Assessment 
score
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Stage 4: Assessment score

● Each model element receives a matching score.

○ Perfectly matched: score of 1

○ Partially matched: score of 0.5

○ Not matched: score of 0

● Calculate Precision, Recall, and F1 based on matches

● Final grade is a weighted average of F1 scores for 

classes, attributes and relations: 𝑔𝑟𝑎𝑑𝑒 =
𝑤𝑐𝐹1

𝐶+𝑤𝑎𝐹1
𝐴+𝑤𝑟𝐹1

𝑅

w𝑐+𝑤𝑎+𝑤𝑟

1. Class match

1.1 Within type

1.2 All info 

2. Attribute 
match

3. Relation 
match

4. Assessment 
score
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Experiment



Experimental Settings

● Modeling problem: smart home domain

● From undergraduate software course
○ 5 enumeration classes, 15 regular classes, 3 abstract classes
○ 13 enumeration literals, 13 attributes

○ 32 relations

● 20 student solutions

● Embedding

○ WordE4MDE library 

○ OpenAI embed-ding model text-embedding-ada-002
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Research Questions

RQ1: What is the performance of our algorithm in matching a candidate domain model 

to a reference model regarding classes, attributes, and relations?

RQ2: To what extent does the algorithm-generated grade compare with those produced 

by human grading or other automated approaches?
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RQ1: Evaluation of Generated Matches

• Manually match model elements: human matches

• The matches are evaluated with precision / recall and F1

• For any modeling element a from the reference model, b from the candidate model (a, b) 

represents a matches b

a

algorithm

(a, b)

(a, b) → True positive

(a, c) → False positive

(a, None) → False positive

(a, None)

(a, b) → False negative

(a, None) → True negative

human
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RQ1: Matching Performance

Evaluation on precision, recall and F1-score for each type of modeling elements (%)

Class 74.25

Attribute 72.74

Relation 85.56

Class 93.32

Attribute 78.61

Relation 76.28

Class 82.39

Attribute 74.56

Relation 79.58

Precision Recall F1

• Close to human matches but still room for improvements

• Better at identifying classes compared to attributes
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RQ2: Grading Performance

● Comparison with grading from 

one author of this paper

● Use metrics Mean Absolute 

Error and Pearson Correlation 

● Comparison using an 

external benchmark

● Compare numerical grades 

1 2Compare with human Compare with other tools

At the end of the day, we need a “grade”
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RQ2: Evaluation of Generated Score

Comparing generated grades from human grades

● Mean absolute error (MAE)

●MAE =
1

n
σ𝑖=1𝑛 𝐴𝑐𝑡𝑢𝑎𝑙𝑖 − 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑖

● Pearson correlation between two set of scores

Our approach gives: 𝑔𝑟𝑎𝑑𝑒 =
𝑤𝑐𝐹1

𝐶+𝑤𝑎𝐹1
𝐴+𝑤𝑟𝐹1

𝑅

w𝑐+𝑤𝑎+𝑤𝑟

Set 𝑤𝑐 = 4,𝑤𝑎 = 1 and 𝑤𝑟 = 1 based on grading practice

TouchCore Comparison GPT4-turbo 
(few-shot prompting)
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RQ2: Grading Performance - External Comparison

● Comparison on our benchmark and an external benchmark against human grading

○ Typical letter grade range: ~5%, e.g., A- ≈ 80% - 85%

Methods MAE

TouchCore 0.2524

GPT-4 0.0674

Ours 0.0456

Methods MAE Correlation

Ours 0.0310 0.8714

Results on our benchmark Results on benchmark from Singh et. al.
(manual grades provided by modeling experts)

• Our approach closely correlates with grades given by human

• Our approach outperforms both rule-based and LLM baselines
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Conclusion



Conclusion

● Introduces a novel algorithm for automated assessment utilizing text 

embeddings and graph matching techniques

● Highly correlate with human grading, but there remains potential for enhancement

● Future directions

○ User-friendly interface

○ Generate human-readable feedback
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