

MODELS 2024 Educators Symposium. September 2024. Linz, Austria. **Embedding-based** Automated **Assessment of Domain Models**

Kua Chen¹, **Boqi Chen**¹, Yujing Yang¹, Gunter Mussbacher¹, Daniel Varro^{1, 2}

¹Electrical and Computer Engineering, McGill University, Montreal, Canada ²Department of Computer and Information Science (IDA), Linköping University, Linköping, Sweden

McGill UNIVERSITY

01 Introduction

Domain Modeling

< <enum>> CommandStatus</enum>
Requested
Completed
Failed

ControlCommand		
CommandStatus cs		
0*		
ActuatorDevice		

Domain modeling

- Captures relations between different entities of a domain
- Is a core concept for in software engineering practice and education
- An active research field for automated generation
- In **both cases**, a large amounts of assessments against a reference solution are required!

es of a domain ring

eneration nents against a

Domain Model Assessment

Reference solution

Student solution

T 1			
Intr	<u>odu</u>	CTIC	n
		CIICI	
	044	00.0	•••

Method

Experiment: RQ1

Experiment: RQ2

Domain Model Assessment

Reference solution

Rule-based method?

- Hard to generalize
- Manual effort
- Error-prone

Student solution

ion

Method

Experiment: RQ1

Experiment: RQ2

Domain Model Assessment

Reference solution

Large language models (LLMs)?

- Hallucination
- No explanation
- Can we trust it?

Student solution

Text Embeddings

Word Embedding: Skip-gram MDE

- Represent words in a fixed-dimension vector
- Predicting the surrounding words in a sentence
- Trained on modeling corpus
- e.g., embed('model') = [0.15, 0.28, 0.123, ...]

Sentence Embeddings: text-embedding-ada-002

- Represent a sequence of words in a fixed-dimension vector
- Captures the **relations of words** in the sentence

Method

Experiment: RQ1

Cosine Similarity

- Cosine similarity measures the similarity between two vectors
- It can be used to measure the similarity between text embeddings

Introduction	Mathad	Everytiment, DO1	Even a view and to DO2
	Method	схрепшенс. күт	Lipenment. KQZ

rs ddings

Graph Similarity Measures

Graph isomorphism

• Determine if two graphs have the **same** underlying structure

• Graph edit distance (GED)

- The minimum cost of an **edit path** to transforms one graph
 isomorphic to the other
- Edit path: a sequence of **edit operations** (inserting, deleting, and relabeling vertices or edges)

Conclusion

9

Method

Overview

Introduction

Experiment: RQ2

Stage 1: Class Matching

- Match classes based on **class names** and **attributes** with **word embeddings** ٠
- Match classes based on class names and attributes and **relations** with •

sentence embeddings

Method

Experiment: RQ1

Stage 2: Attribute Matching

• Similar logic to class matching

- Stage 2.1 Attribute matching between matched classes
- Stage 2.2 Attribute matching between any classes
- Stage 2.3 Reference attribute to candidate class matching
- Stage 2.4 Reference class to candidate attribute matching

Stage 3: Relation Matching

- **Different logic** from class matching or attribute matching
- Relation (R) = multiplicity 1, class 1, relation type, multiplicity 2, class 2
- A candidate relation R1 is matched with the reference R2 if
 - \circ class^{R1} = class^{R2} (from the class match)
 - \circ relation type^{R1} = relation type^{R2}
 - \circ multiplicity^{R1} = multiplicity^{R2}
- An Example of perfect match:

* ControlCommand associate 1 ActuatorDevice

* ControlCommand associate 1 Actuator

Stage 4: Assessment score

- Each model element receives a matching score.
 - $\circ~$ Perfectly matched: score of ${\bf 1}$
 - Partially matched: score of **0.5**
 - $\circ~$ Not matched: score of ${\bm 0}$
- Calculate Precision, Recall, and F1 based on matches
- Final grade is a **weighted average** of F1 scores for

classes, attributes and relations: $grade = \frac{w_c F_1^C + w_a F_1^A + w_r F_1^R}{w_c + w_a + w_r}$

Experiment

Experimental Settings

- Modeling problem: smart home domain
- From undergraduate software course
 - 5 enumeration classes, 15 regular classes, 3 abstract classes
 - 13 enumeration literals, 13 attributes 0
 - 32 relations
- 20 student solutions

- Embedding
 - WordE4MDE library
 - OpenAI embed-ding model text-embedding-ada-002 0

Research Questions

RQ1: What is the performance of our algorithm in **matching** a candidate domain model to a reference model regarding classes, attributes, and relations?

RQ2: To what extent does the algorithm-generated **grade** compare with those produced by **human grading** or other automated approaches?

RQ1: Evaluation of Generated Matches

Manually match model elements: human matches

Introduction

- The matches are evaluated with precision / recall and F1
- For any modeling element *a* from the reference model, *b* from the candidate model (*a*, *b*) represents *a* matches *b*

20

RQ1: Matching Performance

Evaluation on precision, recall and F1-score for each type of modeling elements (%)

- Close to human matches but still room for improvements
- Better at identifying **classes** compared to **attributes** •

F1

82.39
74.56
79.58

RQ2: Grading Performance

At the end of the day, we need a "grade"

Compare with human

- Comparison with grading from one **author** of this paper
- Use metrics Mean Absolute
 Error and Pearson Correlation

Compare with other tools

Comparison using an external benchmark Compare numerical grades

RQ2: Evaluation of Generated Score

Our approach gives: $grade = \frac{w_c F_1^c + w_a F_1^A + w_r F_1^R}{w_c + w_a + w_r}$ Set $w_c = 4$, $w_a = 1$ and $w_r = 1$ based on grading practice

Comparing generated grades from human grades

• Mean absolute error (MAE) -

• MAE =
$$\frac{1}{n} \sum_{i=1}^{n} n |Actual_i - Predicted_i|$$

Pearson correlation between two set of scores

G

GPT4-turbo (few-shot prompting)

Introduction

Method

Experiment: RQ1

Experiment: RQ2

Conclusion

23

RQ2: Grading Performance - External Comparison

- Comparison on our benchmark and an external benchmark against human grading
 - Typical letter grade range: ~5%, e.g., A- \approx 80% 85% Ο

Methods	MAE	Correlation
Ours	0.0310	0.8714

Results	on	our	benchmark
NCSUICS		u	Denemiark

	o/4
GPT-4 0.06	4
TouchCore 0.25	524
Methods MAE	

Results on benchmark from Singh et. al. (manual grades provided by modeling experts)

- Our approach **closely correlates** with grades given by human •
- Our approach **outperforms** both rule-based and LLM baselines ۲

Method

Experiment: RQ1

Conclusion

- Introduces a novel algorithm for automated assessment utilizing **text** embeddings and graph matching techniques

• Highly correlate with human grading, but there remains potential for enhancement

- Future directions
 - User-friendly interface
 - Generate human-readable feedback Ο

25

Omain Model Assessment

Our approach

Research Questions

RQ1: What is the performance of our algorithm in **matching** a candidate domain model to a reference model regarding classes, attributes, and relations?

RQ2: To what extent does the algorithm-generated **grade** compare with those produced by **human grading** or other automated approaches?

Introduction

Method

score

Experiment: RQ1

Experiment: RQ2

