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I8 Graph Model Generation A LMs for Graph Model Generation
Software engineering processes, such as requirements engineering, model-based LLMs enable fast automated graph model generation
testing, and code generation, involve many different types of graph models directly from textual descriptions
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Traditionally, these models are created manually by engineers from textual
requirement descriptions, which can be time consuming and error-prone ¢ — .
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B Improving LLMs for Model Generation with Self-Consistency, Partial Models, and Constraints
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