

Consistent Graph Model Generation with Large Language Models

Boqi (Percy) Chen boqi.chen@mail.mcgill.ca McGill University, Montreal, Canada

Graph Model Generation

Software engineering processes, such as requirements engineering, model-based testing, and code generation, involve many different types of graph models

1.Generate

n candidates

label

Activity

Decision

C?

В

yes

А

2. LLMs for Graph Model Generation

LLMs enable fast automated graph model generation directly from textual descriptions

However, graph models generated from LLMs may contain several potential issues

3. Constraint translation

1. ∀Node u,v;!inRelations(u,*)∧ $!inRelations(v, *) \Rightarrow u = v$

Conclusion 5.

Constraint aware self-consistency serves as a *test-time compute* method to significantly improve the model quality γŢ

- Constraint aware concretization Improved consistency
- Consistency in the output model \implies Improved model accuracy

References 6.

[1] Famelis, Michalis, et al. "Partial Models: Towards Modeling and Reasoning with Uncertainty." ICSE 2012.

[2] Semeráth, Oszkár, et al. "A Graph Solver for the Automated Generation of Consistent Domain-Specific Models." ICSE 2018.

[3] Chen, Boqi, et al. "Consistent Scene Graph Generation by Constraint Optimization." ASE 2022. [4] Wang, Xuezhi, et al. "Self-Consistency Improves Chain of Thought Reasoning in Language Models." ICLR 2023.