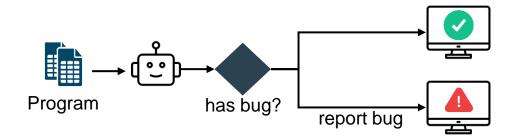


The Power of Types: Exploring the Impact of Type Checking on Neural Bug Detection in Dynamically Typed Languages


Boqi Chen¹, José Antonio Hernández López^{2,3}, Gunter Mussbacher¹, Dániel Varró^{1,2}

¹Electrical and Computer Engineering, McGill University, Montreal, Canada ²Department of Computer and Information Science (IDA), Linköping University, Linköping, Sweden ³Department of Computer Science and Systems, University of Murcia, Murcia, Spain

Neural bug detectors (NBDs)

 Neural networks designed for bugs *beyond the scope* of traditional detection tools, such as parsers, compilers and type checkers

A category of bugs about misuse of variables

```
def count_even_odd(numbers):
    evens = 0
    odds = 0
    for num in numbers:
        if num % 2 == 0:
            evens += 1
        else:
            evens += 1
        return evens, odds

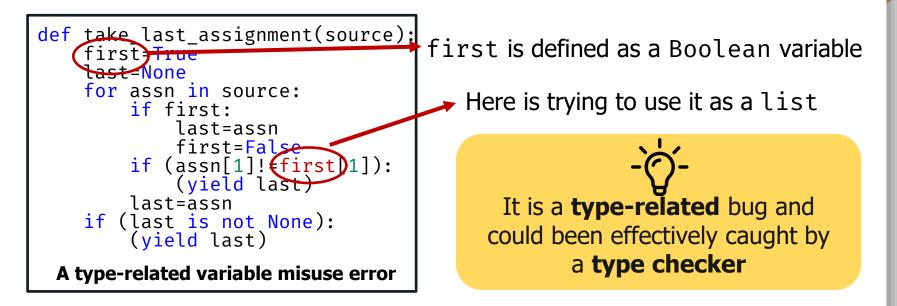
A logic-related variable misuse error
```

```
def take_last_assignment(source):
    first=True
    last=None
    for assn in source:
        if first:
            last=assn
             first=False
        if (assn[1]!=first[1]):
            (vield last)
        last=assn
    if (last is not None):
        (vield last)
 A type-related variable misuse error
```

programs can be parsed / compiled without issues

• Logic-related variable misuse bugs

```
def count_even_odd(numbers):
    evens = 0
    odds = 0
    for num in numbers:
        if num % 2 == 0:
            evens += 1
    else:
        evens += 1
    return evens, odds


A logic-related variable misuse error
```

The variable **odd** should be used

Need to understand the function logic to identify the error

(An NBD can help in this case

• The type-related variable misuse bugs

The type related variable migues by as

These bugs can be identified by type checkers, do we still need NBDs for them?

(yield last)

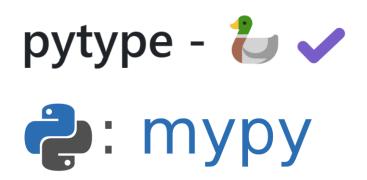
de

A type-related variable misuse error

could been effectively caught by a **type checker**

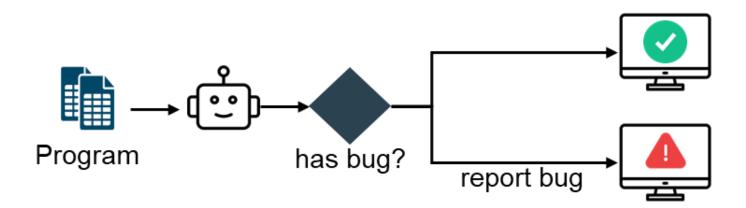
riable

.nd

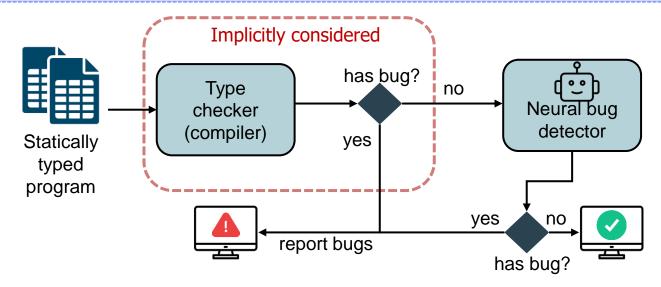

The type-related bugs...

%Prevalence in datasets

The type-related bugs...


%Prevalence in datasets

A significant portion of the dataset (5% - 19.56%)


Why do these samples exist in the datasets?

Recall the typical workflow of neural bug detectors

Why do these samples exist in the dataset?

There is one more implicit step...

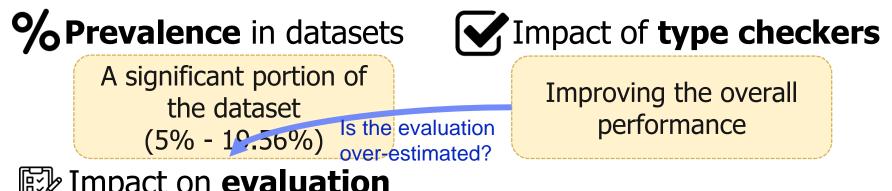
This is not the case for dynamically typed languages

The type-related bugs...

%F	Prevalence in dataset	Impact of type checkers		
	A significant portion of the dataset (5% - 19.56%)	Use a type checker to identify them?		

Impact of type checkers

Neural bug detectors only \rightarrow **Pytype + NBD** on Precision (P) and Recall (R)


NBDs	Ρ	R		NBDs	Ρ	R
CodeBERT	Ļ		With explicit	CodeBERT		
GraphCodeBERT	Ļ	1	type annotation	GraphCodeBERT		
UniXcoder	Ļ			UniXcoder		
GGNN				GGNN		
GREAT		1		GREAT		

Unannotated real-world programs

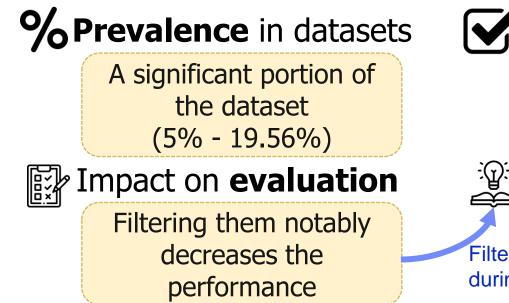
Annotated real-world programs

Integrating type checkers is useful when **recall of bugs** is more relevant, or **explicit type annotation** exists

The type-related bugs...

Impact on evaluation

Influence on evaluation


What if the type-related bugs are removed from the testing datasets?

NBDs	ΔΡ (%)	ΔR (%)	
All NBDs	-5.67 to -10.35	-3.55 to -6.16 👢	
	With explicit type annotation		
NBDs	ΔΡ (%)	ΔR (%)	
All NBDs	-3.18 to -12.83	-5.12 to -17.32	-

Annotated real-world programs

Removing type related bugs causes **significant performance drops**

The type-related bugs...

Impact of **type checkers**

Improving the overall performance

Impact on **training**

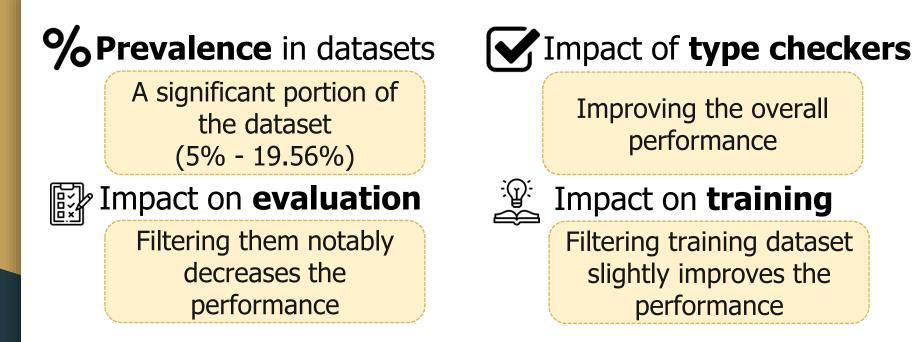
Filter these bugs during training?

The type-related bugs...

% Prevalence in datasets A significant portion of the dataset (5% - 19.56%)

Impact on **evaluation**

Filtering them notably decreases the performance


Impact of type checkers

Improving the overall performance

Impact on **training**

Filtering training dataset slightly improves the performance

How to better integrate existing SE tools with NBDs so that we can take advantage of both?

Preprint:

17