
The Power of Types: Exploring the Impact of
Type Checking on Neural Bug Detection

in Dynamically Typed Languages

1

Boqi Chen1, José Antonio Hernández López2,3,
Gunter Mussbacher1, Dániel Varró1,2

1Electrical and Computer Engineering, McGill University, Montreal, Canada
2Department of Computer and Information Science (IDA), Linköping University, Linköping, Sweden
3Department of Computer Science and Systems, University of Murcia, Murcia, Spain



Neural bug detectors (NBDs)

2

• Neural networks designed for bugs beyond the scope of traditional 

detection tools, such as parsers, compilers and type checkers

Program has bug?
report bug



Variable misuse bugs

3

def take_last_assignment(source):
first=True
last=None
for assn in source:

if first:
last=assn
first=False

if (assn[1]!=first[1]):
(yield last)

last=assn
if (last is not None):

(yield last)

• A category of bugs about misuse of variables

A type-related variable misuse error

def count_even_odd(numbers):
evens = 0
odds = 0
for num in numbers:

if num % 2 == 0:
evens += 1

else:
evens += 1

return evens, odds

A logic-related variable misuse error

programs can be parsed / compiled without issues



Variable misuse bugs

4

• Logic-related variable misuse bugs

def count_even_odd(numbers):
evens = 0
odds = 0
for num in numbers:

if num % 2 == 0:
evens += 1

else:
evens += 1

return evens, odds

A logic-related variable misuse error

The variable odd should be used

Need to understand the function logic 
to identify the error

An NBD can help in this case



Variable misuse bugs

5

def take_last_assignment(source):
first=True
last=None
for assn in source:

if first:
last=assn
first=False

if (assn[1]!=first[1]):
(yield last)

last=assn
if (last is not None):

(yield last)

• The type-related variable misuse bugs

A type-related variable misuse error

first is defined as a Boolean variable

Here is trying to use it as a list

It is a type-related bug and 
could been effectively caught by 

a type checker



Variable misuse bugs

6

def take_last_assignment(source):
first=True
last=None
for assn in source:

if first:
last=assn
first=False

if (assn[1]!=first[1]):
(yield last)

last=assn
if (last is not None):

(yield last)

• The type-related variable misuse bugs

A type-related variable misuse error

first is defined as a Boolean variable

Here is trying to use it as a list

It is a type-related bug and 
could been effectively caught by 

a type checker

These bugs can be identified by 
type checkers, do we still need 

NBDs for them?



Research questions

7

The type-related bugs…

Prevalence in datasets



Research questions

8

The type-related bugs…

Prevalence in datasets

A significant portion of 
the dataset 

(5% - 19.56%)



Why do these samples exist in the datasets?

9

Recall the typical workflow of neural bug detectors



Why do these samples exist in the dataset?

10

Statically

typed

program

Type 

checker

(compiler)

has bug?

yes

report bugs

yes

has bug?

There is one more implicit step...

Implicitly considered

Neural bug 

detector

This is not the case for dynamically typed languages

no

no



Research questions

11

The type-related bugs…

Prevalence in datasets Impact of type checkers

A significant portion of 
the dataset 

(5% - 19.56%)
Use a type checker
to identify them?



Impact of type checkers

12

NBDs P R

CodeBERT

GraphCodeBERT

UniXcoder

GGNN

GREAT

Unannotated real-world programs Annotated real-world programs

With explicit 
type annotation

Neural bug detectors only → Pytype + NBD on Precision (P) and Recall (R)

Integrating type checkers is useful when recall of bugs is more 

relevant, or explicit type annotation exists

NBDs P R

CodeBERT

GraphCodeBERT

UniXcoder

GGNN

GREAT



A significant portion of 
the dataset 

(5% - 19.56%)

13

Research questions

The type-related bugs…

Prevalence in datasets Impact of type checkers

Impact on evaluation

Improving the overall 
performanceIs the evaluation 

over-estimated?



Influence on evaluation

14

What if the type-related bugs are removed from the testing datasets?

NBDs ΔP (%) ΔR (%)

All NBDs -5.67 to -10.35 -3.55 to -6.16

Unannotated real-world programs

Annotated real-world programs

With explicit 
type annotation

Removing type related bugs causes significant performance drops

NBDs ΔP (%) ΔR (%)

All NBDs -3.18 to -12.83 -5.12 to -17.32



Research questions

15

The type-related bugs…

Prevalence in datasets Impact of type checkers

Impact on evaluation Impact on training

Filtering them notably 
decreases the 
performance

Filter these bugs 

during training?

A significant portion of 
the dataset 

(5% - 19.56%)

Improving the overall 
performance



Research questions

16

Prevalence in datasets

The type-related bugs…

Impact of type checkers

Impact on evaluation Impact on training

Filtering them notably 
decreases the 
performance

Filtering training dataset 
slightly improves the 

performance

A significant portion of 
the dataset 

(5% - 19.56%)

Improving the overall 
performance



17

Prevalence in datasets Impact of type checkers

Impact on evaluation Impact on training

Filtering them notably 
decreases the 
performance

Filtering training dataset 
slightly improves the 

performance

A significant portion of 
the dataset 

(5% - 19.56%)

Improving the overall 
performance

Preprint:
How to better integrate existing SE 
tools with NBDs so that we can take 
advantage of both?


	Slide 1: The Power of Types: Exploring the Impact of Type Checking on Neural Bug Detection in Dynamically Typed Languages
	Slide 2: Neural bug detectors (NBDs)
	Slide 3: Variable misuse bugs
	Slide 4: Variable misuse bugs
	Slide 5: Variable misuse bugs
	Slide 6: Variable misuse bugs
	Slide 7: Research questions
	Slide 8: Research questions
	Slide 9: Why do these samples exist in the datasets?
	Slide 10: Why do these samples exist in the dataset?
	Slide 11: Research questions
	Slide 12: Impact of type checkers
	Slide 13: Research questions
	Slide 14: Influence on evaluation
	Slide 15: Research questions
	Slide 16: Research questions
	Slide 17

