Automated Generation of Consistent, Diverse and Structurally Realistic Graph Models

Oszkár Semeráth¹, Aren Babikian², **Boqi Chen²**, Chuning Li², Kristóf Marussy¹, Gábor Szárnyas¹, Dániel Varró^{1,2}

¹Department of Measurement and Information Systems, Budapest University of Technology and Economics ²Department of Electrical & Computer Engineering, McGill University

<u>semerath@mit.bme.hu</u>, <u>aren.babikian@mail.mcgill.ca</u>, <u>boqi.chen@mail.mcgill.ca</u>, <u>chuning.li@mail.mcgill.ca</u>, <u>marussy@mit.bme.hu</u>, <u>szarnyas@mit.bme.hu</u>, <u>varro@mit.bme.hu</u>

Why Graph Models?

Graph Database Testing

System Modeling

Safety-Critical Systems Testing

Data for Machine Learning

Why Graph Models Generation?

Limitation of Real (Manually- created) Models:

- Various models are needed for testing or training purposes
- Manual creation is slow and expensive
- Real models may not be available due to privacy concerns
- Critical edge cases may be **missing**

Motivation

The **<u>structure</u>** of the generated models should...

- Comply with domain-specific wellformedness constraints
- Cover critical edge cases / equivalence classes
- Be structurally similar to the real models in the domain

Varró, D., Semeráth, O., Szárnyas, G., & Horváth, Á. (2018). Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph Models. *Graph Transformation, Specifications, and Nets*.

Motivation

Cover critical

Be

m

The generated models should...

Comply with domain-specific well-No existing model generators satisfy all three properties! formedness constraints

Varró, D., Semeráth, O., Szárnyas, G., & Horváth, Á. (2018). Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph Models. Graph Transformation, Specifications, and Nets.

Realistic

RQ1 How to measure (structural) realisticness of generated graph models?

How to generate realistic graph models while ensuring consistency and diversity?

Consistent

The model complies the **metamodel** and does not violate any **well-formedness constraints**

Consistent

The model complies the **metamodel** and does not violate any **well-formedness**

Diverse

Internal Diversity: Different neighborhood structures in one model

Diverse

Internal Diversity: Different neighborhood structures in one model

External Diversity: Difference in structure for a pair of models

Diverse

External Diversity: Diff structure

Realistic

Realistic Structure: The generated model structure should be indistinguishable from the manually created graphs

This definition is not easily to measure and optimize...

We need a more unambiguous measure of realisticness

New definition: A model is considered structurally realistic if the values of **desired** <u>graph metrics</u> are at close <u>distance</u> to the values of the same metric for a <u>representative</u>

Measure of Structural Realisticness

New definition: A model is considered structurally realistic if the values of desired <u>graph metrics</u> are at close *distance* to the values of the same metric for a *representative*

Graph metrics: a graph level number or a distribution of node / edge level metric E.g., Node Type Distribution (NTD)

<u>NTD(Model1) = [State: 2, Transition: 2, Region: 0, Entry: 0]</u>

Distance: measuring the distances between two metric distributions E.g., Manhattan (L1) Distance

<u>Manhattan(NTD(Model1), NTD(Model2)) = 3</u>

- - Representative: A metric value that can represent the properties of the real models.
 - Provided by Experts
 - Select the centroid of the metrics cluster on a set of human models
 - Select by any other strategies

Measure of Structural Realisticness

New definition: A model is considered structurally realistic if the values of **desired** <u>graph metrics</u> are at close <u>distance</u> to the values of the same metric for a <u>representative</u>

Metric distances of a set of models plotted by MDS (Multi-Dimensional Scaling). Distance represent the closeness of the model metrics Model 1 Model 2 Representative Coordinate has no meaning 0.02 Metric distance 0.00 -0.02-0.06-0.020.00 -0.08 -0.04

With the new definition, we can conclude Model 2 is more realistic than Model 1

Approach Overview

Objectives: Generate graph models that are close to the human representatives w.r.t. different metrics. while ensuring consistency and diversity

Approach Overview

Objectives: Generate graph models that are close to the human representatives w.r.t. different metrics, while ensuring consistency and diversity

- Selection of representatives: can use any method suggested by experts
- Search strategy: *hill-climbing* to select the action leading to the best next state
- Objective function: linear combination of metrics
- State coding (graph isomorphism): partial model with neighborhood shapes

Selection of Graph Generator

- Random Model Generators: *RandomEMF*
- Consistent Model Generators: VIATRA Solver, Alloy
- Diverse Model Generators: VIATRA Solver

We choose VIATRA Solver as the Model Generator component of our approach as it is able to generate both **consistent** and **diverse** graph models

Structure Realisticness Compared to Existing Generators

Orange is the proposed approach

The proposed approach is closer to the representative and the human cluster than other approaches

Structure Realisticness Compared to Existing Generators

Orange is the proposed approach

Concerning the *average minimal distance* to the **human cluster**, the **proposed approach** provide more realistic models in most setups of case studies in the paper.

Conclusion

Consistent

Realistic

Approach Overview

Objectives: Generate graph models that are close to the human representatives w.r.t. different metrics, while ensuring consistency and diversity

- Selection of representatives: can use any method suggested by experts
- Search strategy: hill-climbing to select the action leading to the best next state
- Objective function: linear combination of metrics
- State coding (graph isomorphism): partial model with neighborhood shapes

Diverse

Structure Realisticness Compared to Existing Generators

Orange is the proposed approach

Concerning the *average minimal distance*, the proposed approach (**Real**) provide more realistic in many cases of the case studies in the paper.

19