Multi-step Iterative Automated Domain Modeling with
Large Language Models

Yujing Yang
McGill University
Montreal, Quebec, Canada

Gunter Mussbacher
McGill University
Montreal, Quebec, Canada

ABSTRACT

Domain modeling, which represents the concepts and relationships
in a problem domain, is an essential part of software engineering. As
large language models (LLMs) have recently exhibited remarkable
ability in language understanding and generation, many approaches
are designed to automate domain modeling with LLMs. However,
these approaches usually formulate all input information to the
LLM in a single step. Our previous single-step approach resulted
in many missing modeling elements and advanced patterns. This
paper introduces a novel framework designed to enhance fully
automated domain model generation. The proposed multi-step au-
tomated domain modeling approach extracts model elements (e.g.,
classes, attributes, and relationships) from problem descriptions.
The approach includes instructions and human knowledge in each
step and uses an iterative process to identify complex patterns,
repeatedly extracting the pattern from various instances and then
synthesizing these extractions into a summarized overview. Fur-
thermore, the framework incorporates a self-reflection mechanism.
This mechanism assesses each generated model element, offering
self-feedback for necessary modifications or removals, and inte-
grates the domain model with the generated self-feedback. The
proposed approach is assessed in experiments, comparing it with a
baseline single-step approach from our earlier work. Experiments
demonstrate a significant improvement over our earlier work, with
a 22.71% increase in the F;-score for identifying classes, 75.18%
for relationships, and a 10.39% improvement for identifying the
player-role pattern, with comparable performance for attributes.
Our approach, dataset, and evaluation provide valuable insight for
future research in automated LLM-based domain modeling.

*Also with McGill University.

Partially supported the FRQNT-B2X project (file number: 319955), IT30340 Mitacs Ac-
celerate, and the Wallenberg Al, Autonomous Systems and Software Program (WASP),
Sweden.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS Companion '24, September 22-27, 2024, Linz, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0622-6/24/09

https://doi.org/10.1145/3652620.3687807

Boqi Chen
McGill University
Montreal, Quebec, Canada

Kua Chen
McGill University
Montreal, Quebec, Canada

Daniel Varro *
Linképing University
Linkoping, Sweden

CCS CONCEPTS

« Software and its engineering — Object oriented architec-
tures; Object oriented architectures; - Computing method-
ologies — Machine learning approaches.

KEYWORDS

domain modeling, large language models, few-shot learning, prompt
engineering

ACM Reference Format:

Yujing Yang, Bogi Chen, Kua Chen, Gunter Mussbacher, and Daniel Varro
. 2024. Multi-step Iterative Automated Domain Modeling with Large Lan-
guage Models. In ACM/IEEE 27th International Conference on Model Driven
Engineering Languages and Systems (MODELS Companion °24), Septem-
ber 22-27, 2024, Linz, Austria. ACM, New York, NY, USA, 9 pages. https:
//doi.org/10.1145/3652620.3687807

1 INTRODUCTION

Context: Domain modeling is a core process in model-driven soft-
ware engineering (MDE), essential for building a system design
from various sources of information, including documents and
stakeholder interactions, etc. This process is typically performed
manually by software engineers and domain experts, which can be
time-consuming and highly dependent on human expertise. To miti-
gate this intensive manual effort, many approaches aim to automate
this process [8, 16, 17, 21].

Recent advances in large language models (LLMs) have shown
remarkable generalizability to tasks beyond natural language pro-
cessing [23]. LLMs can perform various functions without super-
vised training on the specific task, using carefully designed input
(called prompts). With different prompt designs, LLMs can achieve
impressive performance on various tasks by only using a few la-
beled examples in the prompt. These advancements suggest signif-
icant potential for applying LLMs to complex tasks such as fully
automated domain modeling.

Several approaches aim to automate this process using LLMs [4-
6]. These methods typically consolidate all information into a single
prompt, allowing the LLM to generate the domain model based on
the given context. Our previous work [7] formulates the problem
of automated domain modeling as a text-generation task, designing
an approach to construct a single prompt and to create a domain
model from the problem description. While these previous results
highlight the potential of LLMs in modeling, two major problems
of these approaches have also been identified: (1) the recall of iden-
tifying classes, attributes, and relationships is, in general, much

https://orcid.org/0009-0003-4092-0493
https://orcid.org/0000-0002-1451-3603
https://orcid.org/0009-0002-7491-7084
https://orcid.org/0009-0006-8070-9184
https://orcid.org/0000-0002-8790-252X
https://doi.org/10.1145/3652620.3687807
https://doi.org/10.1145/3652620.3687807
https://doi.org/10.1145/3652620.3687807

MODELS Companion "24, September 22-27, 2024, Linz, Austria

lower than the precision and (2) no modeling patterns (that cap-
ture modeling best practices) have been identified in case of the
evaluated domain models.

With the advance of research in LLMs, an increasing focus is
put on integrating external or human knowledge into the prompt
using a multi-step approach [10, 18, 22]. These approaches high-
light that, for complex tasks, LLMs can benefit from breaking down
the task into more simple sub-tasks and including human knowl-
edge to solve these sub-tasks. However, this aspect has not been
investigated so far in automated domain modeling.

Reflexion [18] adds self-reflective feedback as context for the
LLM agent in the next generation. This self-feedback provides LLMs
with a concrete direction to improve, helping them learn from prior
mistakes and improve subsequent generations. Motivated by this
approach, a self-feedback mechanism can be included in automated
domain modeling to further enhance the quality of output models.

Objectives: This paper aims to improve the performance of fully
automated domain modeling by including human knowledge and
self-reflection. We propose a multi-step iterative automated do-
main modeling approach with LLMs to extract model elements and
complex patterns from a textual-based problem description and
construct a domain model. This paper also evaluates the proposed
approach on an existing dataset and compares its performance to
our previous single-step approach. Furthermore, this paper also
strives to identify the advantages and limitations of the proposed
approach for fully automated domain modeling.

Contributions: Given a textual domain description, we present a
novel approach for fully automated domain modeling using LLMs.
The specific contributions of this paper are the following:

e We propose a multi-step iterative automated domain model-
ing approach using LLMs combined with human knowledge,
including an iterative process to identify best-practice pat-
terns.

o Furthermore, our approach includes a self-reflection mecha-
nism to generate internal self-feedback according to human
knowledge and then integrate the generated self-feedback
into the domain model for improvement.

e We carry out experiments with GPT-4 [14] to evaluate the
proposed approach compared to our previous single-step
approach. Specifically, this paper assesses the performance of
generating domain models (including classes, attributes, and
relationships) and the performance of identifying domain
modeling patterns.

2 BACKGROUND

2.1 Problem Formulation

Domain modeling involves converting a textual description of the
system in natural language into a structured domain model rep-
resented as a class diagram. Our previous work [7] treats domain
modeling as a text generation problem, where a generative mapping
f directly converts a domain specification d into a domain model M,
ie., M = f(d). In our enhanced multi-step approach, the mapping
from input to output f is a multi-step LLM-based approach, and the
output of f is a textual specification of M. Specifically, f is composed
of a series of mappings from input to output f = f, o... 0 fy o fy,

Yang et al.

where each mapping f; takes the output of the previous step(s) as
input, namely, M = f(d) = f, (... f2(f1(d))).

2.2 Patterns for Domain Model

The domain modeling design process has many common patterns
that have been concluded from years of practice. These patterns
can help improve the accuracy, modularity, and reusability of do-
main models. Commonly used patterns involve the player-role pat-
tern [11] and abstraction-occurrence pattern [12].

In the player-role pattern, the player class (e.g., Person) may
play different roles (e.g., Client and Resident) either concurrently
or at distinct times. Moreover, since the role classes derive from an
abstract role class (e.g., UserRole), this structure allows the abstract
class to retain attributes common across roles while also enabling
the differentiation of specific features within its subclasses.

This paper focuses on the player-role pattern because it is often
used and LLMs perform poorly in identifying it in our prior work [7].
However, our approach can be generalized for other patterns.

2.3 Single-step Generator

A single-step LLM-based method [7] has been introduced for au-
tomating domain model generation. This method involves a single
prompt, including a problem description, task description, and out-
put format description, to generate the domain model with an
LLM. The result demonstrates that the top-performing LLM, GPT-4,
shows impressive domain understanding capability without explicit
training. However, the single-step approach has limitations. Most
critically, this approach often misses elements in the domain model
(low recall). Additionally, the approach struggles to adhere to mod-
eling best practices, such as the player-role pattern. Finally, it is
constrained by the LLM’s token limit, making it difficult to scale to
large domain models.

2.4 Domain Model Evaluation

This paper follows the evaluation scheme and criteria of our previ-
ous work [7], which relies on reference domain models constructed
by experts to evaluate the quality of a generated domain model.

2.4.1 Evaluation Scheme. Motivated by existing work [1], we cat-
egorize each model element into one of four categories: (1) direct
match where the same element is also in the reference model, (2)
semantically equivalent where the reference model contains an el-
ement equivalent to the current element, (3) partial match where
the element achieves the functionality but can be further improved,
and (4) no match where the element is not used in the reference.
The scoring function S can be defined for an element x as follows:

1 if x is in exact match or semantically equivalent
S(x) =140.5 ifx is in partial match (1)
0 if x is in no match

The scoring function will then be used to evaluate the quality of
an auto-generated domain model.

Evaluation Criteria. We evaluate the quality of the output domain
model by using the standard statistical metrics of precision, recall,
and Fj-score over the classes, relationships, and attributes.

Multi-step Iterative Automated Domain Modeling with Large Language Models

Reference
Example Store Solution

Task Description —>»

= Precision
Domain
—> Attribute —_—>
Modeling Problem
Description
Multi-step iterative

generator (MIG)

Post-processor Evaluation

Figure 1: Architecture of multi-step automated domain mod-
eling approach

Precision measures the overall correctness of generated model
elements. For example, let C be the set of all classes and enumer-
ations in the generated model of size m = |C|, the precision of
classes in generated models can be expressed as

22 S(C)

Precisionc = = (2)

where S is the scoring function defined in Equation 1.

Recall measures the degree of the reference model covered by
the generated model. For example, let Cy; be the set of classes and
enumerations in the reference model (ground truth) of size n = |Cy|,
the recall of classes can be expressed as

(e
Recallg = M 3)
n

Finally, we use the classical F;-score definition:

2 X Precisionc X Recalle

FlC = (4)

Precisionc + Recallc

Metrics for attributes or relationships can be computed by sub-
stituting C with the set of attributes or relationships, respectively.

3 APPROACH
3.1 Architecture

Figure 1 illustrates the architecture of the proposed multi-step
automated domain modeling approach. To generate a domain model,
we provide a task description to describe the overall domain model
generation task, a text-based modeling problem description written
in natural language to describe a problem domain, and an example
store that contains few-shot examples explaining the definition of
model elements and patterns.

Next, the multi-step iterative generator (MIG) takes the in-
put information, formulates prompts for an LLM iteratively, and
outputs a textual-based domain model. The designation multi-step
describes the framework of the generator. Instead of generating
a complete domain model in a single step, the tasks are divided
into sequential subtasks while each task outputs an incomplete
partial model. For each subtask, a combination of inputs is used to
formulate the prompt, including a subtask description, a modeling
problem description, the output from the previous step(s), and an
output format description. A sequence of these outputs can be com-
bined into the final complete model. Throughout the multi-step
process, the generator continually revises the partial model based
on the self-feedback from previous steps, allowing for the gradual
accumulation of complex patterns and reducing the likelihood of

MODELS Companion ’24, September 22-27, 2024, Linz, Austria

errors or omissions in the final model. The term, iterative, further
highlights that the approach refines and builds upon the output
through repeated cycles, which is especially significant in identify-
ing domain modeling patterns (e.g., the player-role pattern) within
the model.

Finally, a post-processor is employed to refine the LLM’s out-
put by systematically extracting key elements such as classes, at-
tributes, and relationships. This post-processor utilizes rule-based
algorithms to carefully analyze the LLM-generated text, identifying
and isolating the relevant components. It then organizes these ele-
ments into a structured and accurate final domain model, ensuring
that all critical aspects are correctly captured and aligned with the
expected domain model structure.

Our experimental evaluation involves comparing the generated
domain model to a reference solution created by a human modeling
expert using standard statistical metrics (see Section 2.4.1). We use
these metrics to evaluate each type of model element separately,
including classes, attributes, and relationships.

3.2 Multi-step Iterative Generator (MIG)

As fully automating domain modeling is a complex and challeng-
ing task, we mimic how MDE engineers solve domain modeling
tasks and split the single-step process into smaller, pre-defined sub-
processes. By breaking down the domain modeling process into
distinct phases, MIG only tackles a subtask within each step. An
LLM is involved in each step.

For each pre-defined subtask, MIG combines textual inputs, in-
cluding the output from previous steps, formulates the information
as prompts, and sends it to an LLM. The output is then used as
the input for the following step. MIG contains four sub-processes
as shown in Figure 2: (1) identify classes and attributes, (2) iden-
tify the player-role pattern, (3) self-reflection, and (4) identify re-
lationships. By breaking the single step into multiple processes
and identifying the player-role pattern iteratively, human instruc-
tions and examples can be included in the individual process to
improve the performance of identifying modeling elements. Fur-
thermore, the self-reflection process provides internal self-feedback
from pre-defined instructions to improve itself without any external
feedback.

The detailed workflow is shown in Figure 2, including the input
and processes. We use the H2S domain from an existing work [7]
as the running example to illustrate the output for each step:

"The Helping Hand Store (H2S) collects second-hand articles and
non-perishable foods from residents of the city and distributes them
to those in need. [...] To increase the number of items available for
distribution, H2S is seeking to offer a Pickup and Delivery Service
to its customers, which would allow a resident to schedule a pickup
of items from a street address online at the H2S website. A resident
enters a name, street address, phone number, and optional email
address, as well as a description of the items to be picked up. H2S
has a fleet of pickup vehicles, which it uses to collect items from
residents. A pickup route for that day is determined for each vehicle
for which a volunteer driver is available. Volunteer drivers indicate
their available days on the H2S website. The route takes into account
the available storage space of a vehicle and the dimensions and
weights of scheduled items. A scheduled pickup may occur anytime

MODELS Companion "24, September 22-27, 2024, Linz, Austria

Problem Task Format
description description * description *

{ Identify nouns]—)[Identify classes]

Classes

Example *

Identify attributes

Classes and attributes Prompt template

—)[Identify enumeration classes] Input

Classes, attributes, and [Output

enumeration classes
[: Subprocess

Identify abstract classes

Step 1
¢ Step 2

[Identify the player-role pattern (k times)]
Step 3

Player-role pattern (k runs) l

Step 4
[Summarize the player-role pattern](—

Player-role pattern

[Integrale the player-role pattern into the partial modelr_

_I' Partial model

[Generate feedback for the partial model]

l Feedback

[Integrate feedback with partial model]
|

Partial model

Identify relationships

Complete
domain model

Figure 2: Detailed flowchart of MIG

between 8:00 and 14:00. After completing all scheduled pickups,
the driver drops off all collected second-hand articles at H2S’s
distribution center. [...]"

3.2.1 Step 1. Identify classes and attributes.

Identify nouns. We perform noun analysis on the problem de-
scription to identify potential candidates for class names, attribute
names, role names for associations, and literals for enumeration
classes. For example, identified nouns for H2S with the desired
output format are:

Helping Hand Store, resident, second hand article,

Identify classes. The approach identifies classes using the prob-
lem description and the identified nouns by prompting an LLM.
Sample identified classes in the H2S domain include:

HelpingHandStore, SecondHandArticle,

Identify attributes. Attributes use only primitive data types,
for example, String, Integer, Date, Time, and Boolean. The prompt
instructs the LLM to avoid modeling more complex data as classes.
The identified classes with attributes following the example are:

HelpingHandStore(), SecondHandArticle(string codeRFID,
boolean discarded, String category)
Identify enumeration classes. In this step, problem descrip-

tion and identified nouns, classes, and attributes from previous
steps are evaluated to decide whether they should be modeled as

Yang et al.

enumerations instead. An example enumeration class continuing
with the example is shown below:

enum ItemCategory()
Client(ItemCategory neededCategories)

Identify abstract classes. Our approach identifies abstract
classes (with the "abstract” keyword in the output) by using the
problem description, nouns, and the revised classes. An example
abstract class with the desired output format is shown below:

abstract Item(string description, string dimension,
int weight, Date requestedPickedDate)

3.2.2 Step 2. Identify the Player-Role pattern. Identifying the player-
role pattern poses challenges as our single-step automated domain
modeling approach with LLMs failed to accurately detect this pat-
tern [7]. To enhance detection accuracy, we implement several
strategies: (1) We establish a separate process dedicated to detect-
ing the player-role pattern. Once identified, the pattern is integrated
into the partial model from Step 1. And (2) we apply N-shot learning
in the prompt design, with five classic examples of the pattern, each
accompanied by a brief overview of the relevant classes and the so-
lution in the expected format. (3) We conduct multiple assessments
(k times) of the player-role pattern for each model. Each assessment
follows identical guidelines and information, but it is applied with
a non-zero temperature value to introduce variability. Then, the
k assessments are combined with the output for the player-role
pattern and are integrated into the partial model.

Identify the player-role pattern. To accurately identify the player-
role pattern, we incorporate both the problem description and the
initial output, which includes nouns, classes (possibly abstract),
attributes, and enumerations as inputs. The provided instructions
explain the player-role pattern, offer examples, and outline the ex-
pected output format. We specify two key terms: abstract indicates
whether a class is abstract, and inherit denotes the relationship
between a subclass and its superclass because they are essential
components in the player-role pattern.

We adopt N-shot learning in our prompt design, where N ex-
amples are provided to the LLM as input-output pairs to learn the
desired output’s format and content. Each example consists of two
parts: a brief description of a problem within a specific domain and
a textual representation of a reference player-role pattern for that
example. The N-shot examples can help the model identify class
names, attribute names, and the relationships between superclasses
and subclasses. We present five classic examples of player-role pat-
terns to illustrate this process. One example of the output from this
step is shown below (detailed attributes are ignored for space):

Person(...),

abstract UserRole(),
Resident(...) inherit UserRole,
Volunteer(...) inherit UserRole,
Client(...) inherit UserRole

Summarize the player-role pattern. This step of the approach
focuses on summarizing the player-role pattern based on prior
generations of the player-role pattern. The inputs to this process

Multi-step Iterative Automated Domain Modeling with Large Language Models

include a detailed problem description, a compilation of outcomes
from previously generated solutions for the player-role pattern, and
an existing partial model. In scenarios where the provided informa-
tion does not suggest a discernible player-role pattern, the process
is equipped to explicitly indicate the absence of such a pattern,
outputting "No player-role pattern identified". The summarized
player-role pattern has the same format as the previous step. The
following instructions are included in the prompt:

Identify the player-role pattern from the description
provided regarding the five result lists. Output the
mostly like player-role pattern according to the 5
results you have. You do not need to include
everything from the 5 results you have; only include
the classes you think are correct. Combine the 5
results you have and make the final solution that
makes sense to you. Do not output other classes that
are not included in the player-role pattern. If there
is not any player-role pattern, simply say "No
player-role pattern identified".

Integrate the player-role pattern into the partial model. This step
integrates the player-role pattern into the previous partial model
from Step 1 with the problem description and the extracted patterns.
This step involves a detailed evaluation to ensure that the inclusion
of the player-role pattern is both necessary and beneficial to the do-
main system. The primary instruction is to evaluate the player-role
pattern based on its necessity and to evaluate the model elements
in the partial model concerning the elements in the pattern. The
following instructions are included in the prompt:

1.Analyze the generated classes to see if they are
needed. Some generated classes may not be at the
right level of abstraction. Drop the classes if
they are not necessary to describe the system.

2. Evaluate the player-role patterns to see if they
are necessary. Not all systems need the player-
role pattern. Since player-role patterns can be
complex in implementation, only use them if it is
necessary. If the abstract classes and their
subclasses are necessary, do not use a player-

role pattern.

3. Combine the two versions and make a solution that
is consistent with both versions. Do not have
duplicate classes in the final solution.

3.2.3 Step 3. Self-reflection. During the self-reflection process, the
LLM is used to improve the output of itself. Specifically, it includes
two steps: (1) generate self-feedback for the partial domain model,
and (2) improve the partial domain model according to the self-
feedback.

Generate self-feedback for the partial model. Similar to the frame-
work of self-refinement [13] and reflexion [18], generating useful
reflective self-feedback is challenging since it requires a good un-
derstanding of where the model made mistakes as well as the ability

MODELS Companion ’24, September 22-27, 2024, Linz, Austria

to generate a summary containing actionable insights for improve-
ment. We analyzed the domain model generated from prior experi-
ments, which revealed two main issues: (1) many nouns extracted
from the problem description in the initial steps are misidentified
as classes, and (2) some generated generalization relationships are
misleading.

To generate self-feedback to solve the problems above, the LLM
evaluates each class with its attributes separately. The main objec-
tive is to evaluate if the class and attribute are at the right level
of abstraction. The evaluation and self-feedback generation pro-
cesses are guided by two instructions corresponding to the two
main issues:

1: Classes that are overly detailed or contain minimal attributes
(none or one) should be modeled differently. For example,
if a class does not have meaningful attributes, its attributes
should be reassigned to a more suitable class, and the original
class shall be removed.

2: Some generalization relations from the player-role pattern
may still be unnecessary. These relations should only be
used when there is a clear relation between the superclass
and subclasses to reduce redundancy and enhance clarity.
Some subclasses may be better modeled as instances of other
classes and should be removed.

To generate self-feedback for the current partial model, the input
prompt includes a problem description, a partial model revised from
previous steps, and the following instructions:

Given the class list for the problem description,
write a comment for each class with its attributes.
Evaluate if it is at the correct level of abstraction
to be included in the software system. Many classes
may not be needed or necessary, for example

- If class A is too detailed to be included in the
system, consider removing it.

- If class A does not contain any attributes or only
contains 1 attribute, consider moving the attribute
of class A to another class and removing class A.

- For the enumeration class, evaluate if it should
be captured by an attribute and if its literals are
necessary.

- For the subclasses, evaluate if they are necessary
to be present in the system.

You can write general comments for each class, and
evaluate if the class is necessary. If not, provide
a solution to change it.

One example of the generated self-feedback for the class Dimen-
sion (String length) is shown below:

It is unnecessary as the dimension can be an
attribute of the Item class.

Integrate self-feedback into the partial model. Next, we use the
generated self-feedback to revise and improve the partial model.
To integrate the self-feedback with the previous model, we use the
problem description, the partial model, and self-feedback for each
class as input.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

For example, given the self-feedback shown earlier, the Dimen-
sion is removed, and the attribute String dimension is added to the
Item class.

3.24 Step 4. Identify Relationships. With the completed classes and
attributes, we identify relationships between the classes. In this step,
we aim to identify generalization, composition, and associations.

Composition. We use the keyword contain to indicate that a com-
posite class contains a part class. Multiple compositions are allowed
within a domain model, generally with a multiplicity from one of
the following options [0.5 1, 0..1, 1.”]. An example of composition
is shown below:

1 H2S contain * Person

Generalization. The keyword inherit is used to indicate that a
subclass inherits properties (e.g., attributes and relationships) from
a superclass. A domain model may contain multiple generaliza-
tions. Use cases of a generalization relationship include player-role
patterns. An example of generalization is shown below:

Resident inherit UserRole

Association. An association defines all other relationships be-
tween two classes or with the same class. The keyword associate
is used to indicate that a class associates with another class. An
example is shown below:

1 Resident associate * Item

The complete set of prompts can be accessed in the repository!.

4 EXPERIMENTAL EVALUATION

4.1 Overview

This chapter aims to assess the capability of our approach: the
multi-step iterative LLM-based automated domain modeling sys-
tem. We use the same experiment setting to evaluate our approach
against the baseline approach: our previous single-step approach
we introduced in Section 2. More concretely, we aim to investigate
the following two research questions (RQs):

RQ1: What is the performance of the MIG approach compared to
our previous single-step approach?

RQ2: How effectively are player-role patterns identified with our
MIG approach?

4.2 Experimental Settings

Evaluated LLMs. As our approach is based on generative LLMs,
choosing an LLM for the experiment is crucial. In our MIG ap-
proach, each step accesses one LLM. To assess the ability of our
approach comprehensively, we apply the same LLM in each step.
GPT-4 is one of the latest models released by OpenAlI [15]. GPT-4
can solve complex tasks with higher performance than any of the
previous OpenAl models with broader general knowledge and more
advanced reasoning capabilities. We use GPT-4 in the evaluation
to assess the limit on how LLMs can generate domain models with
our approach. Nevertheless, our approach can be easily adapted to
other LLMs.

Ihttps://github.com/YujingYang666777/DomainModelGeneration

Yang et al.

Temperature Value. In our experiment, we apply a temperature
value of 0.7 in the process of identifying the player-role pattern.
For other steps in our approach and in the baseline approach, we
apply a temperature value of 0 to reduce the nondeterminism in
the generation.

Test Set. We use a test set of eight domain models (Table 1) from
previous work [7] to evaluate our proposed approach compared
to the baseline approach. The examples are taken from projects or
exams from an undergraduate-level, model-driven programming
course and have been used across multiple course offerings, cov-
ering a wide range of domains. Each domain model consists of a
description of the domain system and an associated ground truth
domain model developed by modeling experts. Each example rep-
resents a software system, and three of the domain models require
the use of player-role patterns. A high-quality reference solution
(model) is available for each example.

Evaluation Procedure. Due to the limitation of automated evalua-
tors, we choose to manually evaluate the generated domain models
to precisely measure the performance of our approach. To ensure
consistency and fairness in grading, only one author grades all
generated domain models. Throughout this process, any issues
encountered by the grader are discussed and resolved together
with other domain experts. The code and evaluation test set can be
accessed in the repository.

4.3 RQ1: Quality of Generated Models

4.3.1 Rationale. RQ1 aims to evaluate the performance of our MIG
approach compared to the baseline single-step approach.

In this research question, we aim to compare the performance
of the baseline and our MIG approach. This shows if our approach
has improved compared to the baseline and how far our approach
is from the human-expert performance score for this task.

Furthermore, we carry out a more fine-grained analysis by high-
lighting which modeling aspects the LLMs struggle with. Particu-
larly, we compare the performances of the LLMs when recovering
classes, attributes, and relationships.

4.3.2 Result. The average result of our previous single-step and
our proposed MIG approach are presented in Table 2. The bold text
indicates an improvement in the performance.

Class, attribute, and relationship. For both approaches, the per-
formance of identifying classes is higher than the one of attributes
and higher than the one of relationships. One reason is that a re-
lationship is more complex, requiring the correct classes on both
sides and two correct multiplicities.

Precision, recall, and Fi-score. The precision for classes and at-
tributes is marginally reduced in our MIG approach by 5.45% (from
0.8483 to 0.8021) and 14.24% (from 0.5626 to 0.4825), respectively.
Conversely, precision for relationship identification increases. This
suggests that a comparable proportion of elements within our gen-
erated model are correctly identified and aligned with the solution.
For our previous single-step approach, the precision is higher than
the recall for almost all model elements, indicating that the identi-
fied elements are accurate, but there are many missing elements.

https://github.com/YujingYang666777/DomainModelGeneration

Multi-step Iterative Automated Domain Modeling with Large Language Models

MODELS Companion ’24, September 22-27, 2024, Linz, Austria

Table 1: Collected modeling examples and their domains

Name LabTracker | CelO | TeamSports SHAS OTS Block | Tile-O HBMS
Domain Medical | Social Sports Smart Home | Education | Game | Game | Management
of classes 16 13 16 23 16 15 18 18
of attributes 43 23 24 26 25 30 19 32
of relationships 22 22 20 27 19 24 21 22

Table 2: Comparison of precision, recall, and F;-score for our
previous single-step and proposed MIG approaches for each
model element type

Single-step Approach MIG Approach
Model Element ~— Precision Recall ~ Fj-score Precision Recall Fi-score
Class 0.8483 0.5003 0.6280 0.8021 0.7502 0.7706
Attribute 0.5626 0.5329 0.5403 0.4825 0.5732 0.5176
Relationship 0.2867 0.1420 0.1781 0.3256 0.3027 0.3120

In our proposed MIG approach, the recall is increased for all
three elements, especially for classes and relationships. Specifically,
the MIG approach improves the recall of classes by 50.03% (from
0.5003 to 0.7502) and improves the recall of relationships by 113.17%
(from 0.1420 to 0.3027). This indicates that our generated model
covers many more elements in the solution model.

The proposed MIG approach has similar precision to our previ-
ous single-step approach while improving the recall significantly,
resulting in increased F; -scores. Specifically, our proposed approach
improves the F-score of identifying classes by 22.71% (from 0.6280
to 0.7706) and improves the F;-score of identifying relationships by
75.18% (from 0.1781 to 0.3120). The F;-score is similar for attributes.
The improvements in recall and F;-score come with a trade-off in
precision, particularly for attributes, where precision dropped by
14.24% (from 0.5626 to 0.4825). This trade-off suggests that while the
MIG approach successfully identifies a broader range of elements,
it may also introduce some incorrect elements, especially in more
complex or ambiguous areas like attribute identification.

While the results obtained are promising, there is still room
for improvement, especially for attributes and relationships. One
potential future direction is to integrate rules with LLMs in some
steps. Another direction is to improve components within our MIG
approach, for example, by adding more self-reflection processes.

7

Answer to RQ1. This RQ shows that our proposed ap-
proach overall improves the performance of automating
domain modeling compared to our previous single-step
approach. With a slight decrease in attribute performance,
our approach significantly increases the performance of
classes and relationships, especially in terms of recall.

4.4 RQ2: Performance of Identifying
Player-role Patterns

4.4.1 Rationale. RQ2 aims to evaluate the performance of identi-

fying advanced patterns for our MIG approach. In our proposed

approach, we design a step in the multi-step iterative generator to

identify the player-role pattern explicitly. In the research question,

Table 3: Precision, recall, and F;-score of three approaches of
identifying player-role patterns: zero-shot single-step, two-
shot single-step, and multi-step

Approach Precision Recall Fj-score
Zero-shot Single-step 0.9242 0.6143 0.7380
Two-shot Single-step 1 0.6571 0.7931
Multi-step 0.83 0.8 0.8147

we further investigate the performance of identifying the player-
role pattern and compare it with our previous single-step approach.

For evaluation, we compare the performance of the three ap-
proaches, zero-shot single-step, two-shot single-step, and multi-
step, using precision, recall, and F;-scores for the identified player-
role patterns.

Single-step Approach. In our previous single-step approach as
introduced in Section 2, we formulate all input information into
one prompt. To investigate the effect of adding relevant examples
of the player-role pattern, two prompting techniques are compared,
zero-shot prompting and two-shot prompting. The zero-shot
prompt only provides a high-level description, while the two-shot
approach also provides two-generation examples.

MIG Approach. Our proposed MIG approach includes the step to
identify the player-role pattern for k times, summarizing the result
of the identified player-role pattern during k times, and integrating
it into the partial model. During our experiment, we set k=5, which
means we apply the same prompt to identify the player-role pattern
five times. We also set the temperature value to 0.7 in the process
of identifying the player-role pattern and set it to 0 for the other
steps to reduce the nondeterminism.

4.4.2 Result. Table 3 shows the precision, recall, and F;-score for
zero-shot and two-shot prompting approaches. Two-shot prompt-
ing has higher performance in all three metrics compared with
zero-shot prompting. This shows that within a single step, adding
examples improves the performance of identifying a player-role
pattern.

As shown in Table 3, in comparison with the zero-shot single-step
approach, our MIG approach has a slightly lower precision (decrease
by 10.19%, from 0.9242 to 0.83) but a much higher recall (increase by
30.23%, from 0.6143 to 0.8), resulting in a higher F;-score (increase
by 10.39%, from 0.7380 to 0.8147). The decrease in precision may
be because there are many more classes and attributes identified
with the MIG approach, resulting in more potentially unnecessary
elements.

MODELS Companion "24, September 22-27, 2024, Linz, Austria

In comparison with the two-shot single-step approach, our MIG
approach also achieves a higher recall and a slightly higher F;-
score (increase by 2.72%, from 0.7931 to 0.8147). This comparison
further demonstrates the effectiveness of our proposed approach
in extracting the complete player-role pattern.

For potential improvements, one of the future directions is that
we can design components to identify other advanced patterns, for
example, the abstraction-occurrence pattern.

Answer to RQ2. Overall, our proposed MIG approach has
a better performance compared to our previous single-step
approach, with a higher recall and a slightly higher F;

score.

4.5 Threats to Validity

Internal Validity. The output of an LLM can be slightly different
for each run. To address this variation, we apply a temperature of 0
to reduce the nondeterminism for most steps except for detecting
the player-role pattern, where we intentionally introduce variance.
While this does not guarantee identical outputs each time, it greatly
reduces randomness, making the results more stable and predictable.
Besides, we also keep all generated models for future research.
Furthermore, we address this variation by experimenting with a
set of eight diverse domain examples. The evaluation is a manual
process done by one author, which may introduce bias. We mitigate
this bias by following the grading scheme from previous work [7]
Besides, we also have multiple rounds of evaluation and discuss the
results with other domain experts.

External Validity. Due to the lack of benchmark data sets for
domain modeling with both problem description and reference so-
lution, we adapt eight modeling examples with reference models
created by experts from previous work [7]. Furthermore, models in
this dataset are from undergraduate modeling courses i.e., repre-
sentative of domain modeling exercises in education scenarios. Our
proposed approach may perform differently if used in a different
scenario or with larger models.

Construct validity. Our paper adapts metrics widely used for
evaluating the generated domain models [8, 16, 17, 21].

5 RELATED WORK

Techniques and frameworks for large language models. With
the advancement of large language models (LLMs), various prompt-
ing techniques have been developed to enhance their ability to
address complex real-world problems. Few-shot prompting, pro-
posed by Brown et al. [2], introduces a paradigm where the model
is provided with a limited number of task demonstrations during
inference but does not need fine-tuning or weight updates. Chain-
of-thought prompting, introduced by Wei et al. [19], allows models
to decompose multi-step problems into intermediate steps for com-
plex tasks and allocates additional computation to problems that
require more reasoning steps. Building on research in prompting
techniques that enhance LLM reasoning, Yao et al. [22] proposed
ReAct, which integrates reasoning, action, and decision-making
in LLMs for complex tasks. This interactive approach allows the

Yang et al.

model to create and adapt plans dynamically (reason to act) and
interact with external environments like Wikipedia to integrate
information (act to reason). LangChain [10], an open-source Python
library, helps developers build LLM applications with features like
prompt templates, customizable agents, retrieval modules, memory,
and callback functions.

This paper introduces a multi-step iterative approach to fully
automating domain modeling with LLMs by breaking the entire task
into more manageable subtasks. By providing focused examples
within each segment, our framework enhances the learning process
by enhancing LLMs’ reasoning and self-reflection ability, as well as
their knowledge of domain modeling.

Large language models for MDE. Model-driven Engineer-
ing (MDE) is a widely used software development methodology,
particularly valuable for developing large-scale systems. With the
advancement of LLMs, various LLMs have been integrated into
MDE, significantly improving the development process. Chaaben
et al. [5] propose using GPT-3 for model completion by generating
related elements for a partial model. They create examples using
classes and their relationships, then form prompts with few-shot
learning. However, their approach lacks a domain problem spec-
ification and relies heavily on the partial model. It also does not
include attributes, multiplicity, types of classes, or relationships.
Camara et al. [4] present the use of ChatGPT to build UML class
diagrams enriched with OCL constraints in an interactive mode.
Their findings show that, in contrast to code generation and com-
pletion, the performance of ChatGPT for software modeling is still
quite limited. In our previous publication [6], we report on early
experimental results regarding the potential use of GPT-4 to de-
velop goal-oriented models. While it is valuable to include syntax
information for creating a goal model in the prompt, the amount of
domain information has a limited effect on the responses of GPT-4.
Many elements generated by GPT-4 may be either incorrect or
rather generic and hence not very conducive to highlight important
conflicts among stakeholders in the domain.

Compared with existing approaches adapting LLMs to MDE,
we investigate fully automated domain model generation tasks
with pre-trained generative LLMs given problem descriptions and
including classes, attributes, and relationships. Furthermore, our
multi-step approach decomposes the process into several steps
to include more examples and human instructions and iteratively
identifies advanced patterns from the description.

Automated Domain Modeling. Recently, LLMs have also been
used for automated domain modeling [7]. With LLMs, these ap-
proaches are capable of generating a domain model from text
description without any human involvement. However, these ap-
proaches generate the entire domain model in a single step, limiting
both their performance and scalability. In this paper, we discuss a
multi-step iterative approach using LLMs.

Many existing research efforts on automated domain model-
ing utilize rule-based linguistic processing methods or statistical
natural language processing methods to directly derive complete
domain modeling solutions like UML class diagrams [16, 17] or
provide modeling assistance and suggestions [3, 20] from textual
descriptions in natural language.

Rule-based methods rely on predefined rules and heuristics to
model the knowledge and structure of a specific domain. These

Multi-step Iterative Automated Domain Modeling with Large Language Models

rules include hand-written grammatical templates and heuristics
in linguistics. An example of a rule-based method presents an al-
gorithm with 23 heuristics to identify model elements from user
stories [16] automatically. The designed system processes user sto-
ries written in a specific format and generates a conceptual model
as output. Another example is proposed by Herchi et al. [9]. The
system uses an NLP toolkit to decompose the user need in natural
language and then uses linguistic rules (e.g., All nouns are converted
to entity types) to extract UML concepts. Statistical methods em-
phasize using natural language processing techniques to extract
domain models from requirement documents. Burgueno et al. [3]
designed a framework to suggest new domain model elements for a
given partially completed model, including classes, attributes, and
relationships, using two word-embedding models. Saini et al. [17]
introduced a novel methodology for extracting domain concepts
and relationships from problem description, generating and process-
ing decision points, resulting in multiple possible configurations
for domain models.

6 CONCLUSION

This paper proposes a multi-step iterative LLM-based automated
domain modeling approach, which extracts model elements from
a textual-based problem description and constructs the domain
model, without any human interaction or supervised training. Our
proposed approach is built upon our previous single-step approach
but splits the task of domain model creation into subtasks based on
how humans tackle domain model generation tasks. By solving each
subtask in a separate step, our approach is able to incorporate more
instructions and examples in each step, and a self-reflection mech-
anism. Besides, our approach includes an explicit step to identify
advanced patterns, such as the player-role pattern, and to generate
and integrate self-feedback without any external interaction. Our
proposed approach significantly increases the recall compared to
our previous single-step approach, while maintaining similar preci-
sion, which indicates that our proposed approach can cover more
model elements in the solution model.

For future research, our proposed approach can be further ex-
tended to identify other advanced model elements and patterns.
Besides, our approach can be enhanced with a rule-based com-
ponent to check the generated model, including the format and
analysis of each modeling element, and create self-feedback to im-
prove the output. Additionally, we could explore the inclusion of a
human-in-the-loop process, allowing domain experts to contribute
their knowledge or guide the generative Al more effectively at each
step. We could also explore other generative Al instead of GPTs
and compare their performances. Furthermore, our evaluation used
a set of eight domain models, but further analysis could involve
comparing the results across different models to understand why
some models performed better or worse. Additionally, while our
evaluation has focused on comparing our previous single-step and
proposed multi-step approaches, it would be valuable to conduct
further comparisons with pre-existing domain modeling techniques
that were used before LLMs became prevalent.

REFERENCES

[1] Weiyi Bian, Omar Alam, and J6rg Kienzle. 2019. Automated Grading of Class
Diagrams. In 2019 ACM/IEEE 22nd International Conference on Model Driven

MODELS Companion ’24, September 22-27, 2024, Linz, Austria

Engineering Languages and Systems Companion (MODELS-C). 700-709. https:
//doi.org/10.1109/MODELS-C.2019.00106

[2] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, et al. 2020. Language models are few-shot learners. Advances in neural

information processing systems 33 (2020), 1877-1901.

Loli Burgueiio, Robert Clariso, Sébastien Gérard, Shuai Li, and Jordi Cabot. 2021.

An NLP-based architecture for the autocompletion of partial domain models. In

Advanced Information Systems Engineering: 33rd International Conference, CAiSE

2021, Melbourne, VIC, Australia, June 28-July 2, 2021, Proceedings. Springer, 91—

106.

[4] Javier Camara, Javier Troya, Lola Burguefio, and Antonio Vallecillo. 2023. On
the Assessment of Generative Al in Modeling Tasks: An Experience Report
with ChatGPT and UML. Softw. Syst. Model. 22, 3 (May 2023), 781-793. https:
//doi.org/10.1007/s10270-023-01105-5

[5] Meriem Ben Chaaben, Lola Burguefio, and Houari Sahraoui. 2023. Towards using
few-shot prompt learning for automating model completion. In 2023 IEEE/ACM
45th International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER). IEEE, 7-12.

[6] Bogqi Chen, Kua Chen, Shabnam Hassani, Yujing Yang, Daniel Amyot, Lysanne
Lessard, Gunter Mussbacher, Mehrdad Sabetzadeh, and Daniel Varré. 2023. On
the use of GPT-4 for creating goal models: an exploratory study. In 2023 IEEE
31st International Requirements Engineering Conference Workshops (REW). IEEE,
262-271.

[7] Kua Chen, Yujing Yang, Boqi Chen, José Antonio Hernandez Lopez, Gunter
Mussbacher, and Daniel Varré. 2023. Automated Domain Modeling with Large
Language Models: A Comparative Study. In 2023 ACM/IEEE 26th International
Conference on Model Driven Engineering Languages and Systems (MODELS). IEEE,
162-172.

[8] Jan Franct and Petr Hnétynka. 2011. Automated generation of implementation
from textual system requirements. In Software Engineering Techniques: Third IFIP
TC 2 Central and East European Conference, CEE-SET 2008, Brno, Czech Republic,
October 13-15, 2008, Revised Selected Papers 3. Springer, 34-47.

[9] Hatem Herchi and Wahiba Ben Abdessalem. 2012. From user requirements to

UML class diagram. arXiv preprint arXiv:1211.0713 (2012).

LangChain-Al 2023. LangChain. https://python.langchain.com/docs/get_started/

introduction. Accessed: 2023-02-20.

[11] Craig Larman. 2012. Applying UML and patterns: an introduction to object oriented

analysis and design and interative development. Pearson Education India.

Timothy Christian Lethbridge and Robert Laganiere. 2005. Object-oriented soft-

ware engineering. Vol. 11. McGraw-Hill New York.

[13] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao,

Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,

et al. 2023. Self-refine: Iterative refinement with self-feedback. arXiv preprint

arXiv:2303.17651 (2023).

OpenAlL 2023. GPT-4 Technical Report. https://arxiv.org/pdf/2303.08774.pdf.

arXiv:2303.08774 [cs.CL]

OpenAL 2024. gpt-4-and-gpt-4-turbo. https://platform.openai.com/docs/models/

gpt-4-and-gpt-4-turbo.

Marcel Robeer, Garm Lucassen, Jan Martijn E. M. van der Werf, Fabiano Dalpiaz,

and Sjaak Brinkkemper. 2016. Automated Extraction of Conceptual Models from

User Stories via NLP. In 2016 IEEE 24th International Requirements Engineering

Conference (RE). 196-205. https://doi.org/10.1109/RE.2016.40

Rijul Saini, Gunter Mussbacher, Jin L. C. Guo, and Jorg Kienzle. 2022. Ma-

chine Learning-Based Incremental Learning in Interactive Domain Modelling.

In Proceedings of the 25th International Conference on Model Driven Engineering

Languages and Systems (Montreal, Quebec, Canada). ACM, 176-186.

[18] Noah Shinn, Federico Cassano, Beck Labash, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. 2023. Reflexion: Language Agents with Verbal
Reinforcement Learning. arXiv preprint arXiv:2303.11366 (June 2023).

[19] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le,

and Denny Zhou. 2022. Chain of thought prompting elicits reasoning in large

language models. arXiv preprint arXiv:2201.11903 (2022).

Martin Weyssow, Houari Sahraoui, and Eugene Syriani. 2022. Recommending

metamodel concepts during modeling activities with pre-trained language models.

Software and Systems Modeling 21, 3 (2022), 1071-1089.

[21] Song Yang and Houari Sahraoui. 2022. Towards automatically extracting UML

class diagrams from natural language specifications. In Proceedings of the 25th

International Conference on Model Driven Engineering Languages and Systems:

Companion Proceedings. 396-403.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,

and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.

arXiv preprint arXiv:2210.03629 (2022).

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou,

Yinggian Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al. 2023. A Survey

of Large Language Models. arXiv preprint arXiv:2303.18223 (2023).

—_
A

[10

[12

[14

[15

[16

=
!

[20

~
5,

[23

https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1109/MODELS-C.2019.00106
https://doi.org/10.1007/s10270-023-01105-5
https://doi.org/10.1007/s10270-023-01105-5
https://python.langchain.com/docs/get_started/introduction
https://python.langchain.com/docs/get_started/introduction
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/abs/2303.08774
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://platform.openai.com/docs/models/gpt-4-and-gpt-4-turbo
https://doi.org/10.1109/RE.2016.40

	Abstract
	1 Introduction
	2 Background
	2.1 Problem Formulation
	2.2 Patterns for Domain Model
	2.3 Single-step Generator
	2.4 Domain Model Evaluation

	3 Approach
	3.1 Architecture
	3.2 Multi-step Iterative Generator (MIG)

	4 Experimental Evaluation
	4.1 Overview
	4.2 Experimental Settings
	4.3 RQ1: Quality of Generated Models
	4.4 RQ2: Performance of Identifying Player-role Patterns
	4.5 Threats to Validity

	5 Related Work
	6 Conclusion
	References

