

Multi-step Iterative Automated Domain Modeling with Large Language Models

6th Workshop on Artificial Intelligence and Model-driven Engineering Co-located with MODELS. September 2024. Linz, Austria.

Authors: Yujing Yang¹, Boqi Chen¹, Kua Chen¹, Gunter Mussbacher¹, Dániel Varró^{1,2}

Presenter: Boqi Chen

¹Electrical and Computer Engineering, McGill University, Montreal, Canada ²Department of Computer and Information Science (IDA), Linköping University, Linköping, Sweden

Challenge: Domain Model Creation

• Performed manually by software engineers

- Time consuming
- High variation

• Existing (non-LLM) automated approaches

- Requires some level of human interaction
- Domain elements are extracted mostly at sentence level

Natural Language Description

A city is using the Bus Transportation Management System (BTMS) to simplify the day-to-day activities related to the city's public bus system.

The BTMS keeps track of a driver's name and automatically assigns a unique ID to each driver. A bus route is identified by a unique number that is determined by city staff, while a bus is identified by its unique licence plate. The highest possible number for a bus route is 9999, while a licence plate number may be up to 10 characters long, inclusive. For up to a year in advance, city staff assigns buses to routes. Several buses may be assigned to a route per day. Each bus serves at the most one route per day but may be assigned to different routes on different days. Similarly, for up to a year in advance, city staff to a shots the schedule for its bus drivers. For each route, there is a morning shift, an afternoon shift, and a night shift. A driver is assigned by city staff to a shift for a particular day. The STMS offers dity staff react frequent bus on a particular day. The STMS offers dity staff to a shifts at the same time.

The current version of BTMS does not support the information of bus drivers or buses to be updated – only adding and deloting is supported. However, BTMS does support Indicating whether a bus driver is on sick leave and whether a bus is in the repair shop. If that is the case, the driver cannot be scheduled or the bus cannot be assigned to a route. For a given day, an overview shows – for each route number – the licence plate number of each assigned bus, the entered shifts and the IDs and names of the assigned drivers. If a driver is currently sick or a bus is in the repair shop, the driver or bus, respectively, is highlighted in the overview.

Background: Large Language Models (LLMs)

- LLMs are natural language processing methods designed for text generation.
- Basic mechanism: given a sequence, LLMs predict next token.
- Advantages of using LLM:
 - few-shots learners
 - Large and diverse

Previous Approach: Single Step Generation with LLMs [7]

- High precision but lower recall for classes, attributes, and relationships
- No integration of *modeling practice*
- No modeling *patterns* identified, e.g., Player-role pattern
- One-time effort with LLMs

Approach

Experiment

Conclusion

Practice from LLM Research

Table of Contents

Experiment

Conclusion

Approach: Architecture

Experiment

Conclusion

How Do Engineers Create Domain Models?

Approach

Experiment

Conclusion

Overview

Step 1. Identify Classes and Attributes

Example: A resident enters a name, street address, phone number, optional email address

Experiment

Identify Patterns

Self Reflection

Approach

Experiment

Conclusion

Before self reflection

After self reflection

Approach

Experiment

Identify Relations

- Composition
 - E.g., 1 H2S contain * Person
- Generalization
 - E.g., Resident inherit UserRole
- Association
 - E.g., 1 Resident associate * Item

Approach

Experiment

Conclusion

Experiment

Conclusion

Benchmark and Experiment Setup

The LLM (GPT-4) and configuration for the LLM is fixed for all settings Compared with the singlestep approach [7]

A benchmark with diverse set of description-domain model pairs with different complexities [7]

Name	LabTracker	CelO	TeamSports	SHAS	OTS	Block	Tile-O	HBMS
Domain	Medical	Social	Sports	Smart Home	Education	Game	Game	Management
# of classes	16	13	16	23	16	15	18	18
# of attributes	43	23	24	26	25	30	19	32
<pre># of relationships</pre>	22	22	20	27	19	24	21	22

Experiment: Research Questions

RQ1: What is the performance of our multi-step LLM-based automated domain model approach compared to a single-step approach?

RQ2: What is the performance of identifying player-role patterns with our multi-step LLM-based automated domain modeling system?

RQ1. Generation Performance

	Single-step Approach				MI	G Approach	1
Model Element	Precision	Recall	F_1 -score	Precisio	on	Recall	<i>F</i> ₁ -score
Class	0.8483	0.5003	0.6280	0.8021	+	0.7502 🕇	0.7706 🔶
Attribute	0.5626	0.5329	0.5403	0.4825	i 🕂	0.5732 🕇	0.5176 👡
Relationship	0.2867	0.1420	0.1781	0.3256	5	0.3027 🕇	0.3120 📩

Compared to the single-step approach, for MIG

- Recall for all elements *increases*
- Precision for classes and attributes *drops slightly*
- ➤ Overall F1 score for attributes stays *similar*
- ★ Overall F1 score for classes and relations *increases significantly*

Player-role Pattern

Approach	Precision	Recall	<i>F</i> ₁ -score	
Zero-shot Single-step	0.9242	0.9242 0.6143		
Two-shot Single-step	1	0.6571	0.7931	
Multi-step	0.83	0.8 📩	0.8147	

Compared to the single-step approach

- ★ The MIG approach improves the recall significantly
- In MIG LLMs seem to identify more patterns unnecessarily

Table of Contents

BackgroundApproachExperimentConclusionBackgroundApproachExperimentConclusionExperiment

Challenge: Domain Model Creation

• Performed manually by software engineers

- Time consuming
- High variation

• Existing automated approaches

- Requires some level of human interaction
- o Domain elements are extracted mostly at sentence level

Overview

Practice from LLM Research

RQ1. Generation Performance

	Single	e-step App	roach	MI	G Approach	1
Model Element	Precision	Recall	F_1 -score	Precision	Recall	F ₁ -score
Class	0.8483	0.5003	0.6280	0.8021 🖊	0.7502 🕇	0.7706 🔶
Attribute	0.5626	0.5329	0.5403	0.4825 🖊	0.5732 🕇	0.5176 👡
Relationship	0.2867	0.1420	0.1781	0.3256	0.3027 🕇	0.3120 📩

Compared to the single-step approach, for MIG

- Recall for all elements *increases*
- Precision for classes and attributes *drops slightly*
- ➤ Overall F1 score for attributes stays *similar*
- ★ Overall F1 score for classes and relations *increases significantly*