B McGill Iwies,

Multi-step Iterative Automated Domain
Modeling with Large Language Models

6th Workshop on Atrtificial Intelligence and Model-driven Engineering
Co-located with MODELS. September 2024. Linz, Austria.

Authors: Yujing Yang!, Bogi Chen!, Kua Chenl,
Gunter Mussbacher?, Daniel Varrd!-2

Presenter: Bogi Chen

1Electrical and Computer Engineering, McGill University, Montreal, Canada
2Department of Computer and Information Science (IDA), Linkdping University, Linkdping, Sweden

= B




Background

Approach

Table of Contents

Experiment J

Conclusion




o Time consuming
o High variation

Challenge: Domain Model Creation

e Performed manually by software engineers

e Existing (non-LLM) automated approaches
o Requires some level of human interaction
o Domain elements are extracted mostly at sentence level

Natural Language Description

A city is using the Bus Transportation Management System (BTMS) to simplify the day-to-day activities related
to the city’s public bus system.

The BTMS keeps track of a driver’s name and automatically assigns a unique ID to each driver. A bus route is
identified by a unique number that is determined by city staff, while a bus is identified by its unique licence
plate. The highest possible number for a bus route is 9999, while a licence plate number may be up to 10
characters long, inclusive. For up to a year in advance, city staff assigns buses to routes. Several buses may
be assigned to a route per day. Each bus serves at the most one route per day but may be assigned to
different routes on different days. Similarly, for up to a year in advance, city staff posts the schedule for its bus
drivers. For each route, there is a morning shift, an afternoon shift, and a night shift. A driver is assigned by
city staff to a shift for a particular bus on a particular day. The BTMS offers city staff great flexibility, i.., there
are no restrictions in terms of how many shifts a bus driver has per day. It is even possible to assign a bus
driver to two shifts at the same time.

The current version of BTMS does not support the information of bus drivers or buses to be updated — only
adding and deleting is supported. However, BTMS does support indicating whether a bus driver is on sick
leave and whether a bus is in the repair shop. If that is the case, the driver cannot be scheduled or the bus
cannot be assigned to a route. For a given day, an overview shows — for each route number — the licence plate
number of each assigned bus, the entered shifts and the IDs and names of the assigned drivers. If a driver is
currently sick or a bus is in the repair shop, the driver or bus, respectively, is highlighted in the overview.

Domain Model

s

CrreniDue
Bute

0.° ssmigrments e

soure
[rE—

[ e |
= Joctmviiomts |

[ gomr )

[Rpm—

- et
cxsichtasee - Bocean = e

—
1 gt
0.+ diverschesus
T on
—r i
e =
- e

0.4 rwerschecuies




Background: Large Language Models (LLMs)

LLMs are natural language processing methods designed
for text generation.

e Basic mechanism: given a sequence, LLMs predict next token.

e Advantages of using LLM:

o few-shots learners

o Large and diverse

L Prompt 1 ﬁ . — L — =t '»ﬂ ......... =i

LLM




Task Format
Description Description
Modeling =——
Problem l 0 shot
Description | | ~——— =

Domain
Model

Reasoning
Steps

(it

Prompt
Engineering

Post-processor

Domain
Model
R

Previous Approach: Single Step Generation with LLMs [7]

Reference
Solution

——

Precision

Recall

F1

N

Evaluation

High precision but lower recall for classes, attributes, and relationships
No integration of modeling practice

No modeling patterns identified, e.g., Player-role pattern
One-time effort with LLMs




Practice from LLM Research

©

Iterative, Involving domain Self-feedback
multi-step [19, 22] knowledge [10] [13,18]

Feedback

o (@)

Reference numbers are from the paper 6




Table of Contents

Background

Approach J
Experiment J

Conclusion




Example Store

Approach: Architecture

Task Description

Modeling Problem
Description

generator (MIG)

Class

Attribute

S —

3

Relation

Domain
Model

—

Post-processor

Reference
Solution

v

/

)

Precision

R

Y

Recall
—
)

F1-score

| —

\

Evaluation




How Do Engineers Create Domain Models?

__________________________________________________________________

| . Identify | Identify Create
- Identify nouns =—> classes, —>  modeling .
i . ) : relations
attributes patterns
} “ Evaluate
'~ generated <
model

____________________________

Enable LLMs to follow the same process!




Overview

__________________________________________________________________

s ; : Identify
classesand = player-role = —> Self-reflection :
: : | Relation
attributes patterns

____________________________________________________________________

10




Overview

_________________________________

i Identify
Description classesand ———> player-role =
~ attributes patterns
— ’ Complete
Format g domain
description model
Few-shot _ | _ . Identify -
examples = Self-reflection Relation
11




_________________________________________________
-

Step 1. Identify Classes and Attributes

Example: A resident enters a name, street address, phone number, optional email address

____________________________________________
SS

Identify nouns

\ 4

A resident entergla name, street address;
phone number, dptional email address |

Identify classes

class Resident

Yy

>

Identify attributes

Residenti.
4

>

Identify enumeration

v

Identify abstract classes

~
S~as

-
-




|dentify Patterns

Updated

i i . . Candidate ] identified partial
'c‘f::st'ef;ec identify player- | pattens | Summarize the |pattern Integrate the | model

role patterns (k —>  player-role =~ > player-role @[>
times) pattern pattern

\ / \ ﬂ,.\nalyls the generated classes to see if they are \
P

needed. Some generated classes may not be at the
\ Identify the player-role pattern from the description right level of abstraction. Drop the classes if
P \ provided regarding the five result lists. Output the they are not necessary to describe the system.
P mostly like player-role pattern according to the 5 2. Evaluate the player-role patterns to see if they

results you have. You do not need to include are necessary. Not all systems need the player-

Person(...), everything from the 5 results you have; only include role pattern. Since player-role patterns can be
abstract UserRole(), the classes you think are correct. Combine the 5 complex in implementation, only use them if it is

results you have and make the final solution that necessary. If the abstract classes and their

Resident(...) inherit UserRole
Vol ¢ ) inherit UserR 1’ makes sense to you. Do not output other classes that subclasses are necessary, do not use a player-
olunteer(...) inherit UserRole, are not included in the player-role pattern. If there role pattern,

Client(...) inherit UserRole is not any player-role pattern, simply say "No 3. Combine the two versions and make a solution that

player-role pattern identified” is consistent with both versions. Do not have

\duplicate classes in the final solution. /

13




Self Reflection

Partial
model

Generate feedback

feedback
A 4

Integrate feedback

Updated
partial
V¥ model

14




Self Reflection e

PlayingPiece(string pieceColor, int piecePosition) PlayingPiece(string pieceColor, int piecePosition)

Die(int dieNumber)

Duplicated

""""""""""""""""""""""""""""""""""""""""""" ; feedback

Game(string gameStatus, int currentPlayer) <= . elements i 1

BoardGame(int numberOfPlayers, string gameStatus) inherit Game ‘ ) i ) » | Intearate feedback |

Player(string playerName, string playerColor, int playerPosition) i 1 Player(string playerName, string playerColor, int playerPosition) or

Tile(int tilePosition, string tileColor, string tileType) ! 'I':Ie(mt_hlePosmou_'\, stnng tileColor, string tileType) Updated

Board(int boardSize, string layout) ; Board(int boardSize, string layout) v &1“32.'

ConnectionPiece(int piecePosition) : Unn ecessary
HiddenTile(int tilePosition) inherit Tile le
StartingPosition(int position) elements

ActionTile(int tilePosition, string actionType) inherit Tile ionType) inherit Tile
Deck(int numberOfCards)
ActionCard(string actionType)
Turn(int turnNumber, string playe
Color(string colorType)
Instruction(string actionInstruction)
enum PlayerNumber(Player1, Player2, Player3, Player4)

enum ActionType(ExtraTurn, ConnectTiles, RemoveConnection, MovePiece, LoseTurn)
enum TileColor(White, Black)

enum TileType(Regular, Action, Hidden)

abstract GameRole()

DesignerRole(string layoutDesign, int hiddenTilePosition, int startingPositions][],

string actionTileLocations[], string actionCardTypes][]) inherit GameRole() '
PlayerRole(string playerName, string playerColor, int playerPosition) inherit GameRole():

Deck(int numberOfCards)
ActionCard(string actionType)
Turn(int turnNumber, string playerTurn)

enum PlayerNumber(Player1, Player2, Player3, Player4)

enum ActionType(ExtraTurn, ConnectTiles, RemoveConnection, MovePiece, LoseTurn)
enum TileColor(White, Black)

enum TileType(Regular, Action, Hidden)

DesignerRole(string layoutDesign, int hiddenTilePosition, int startingPositions|], string
actionTileLocations|], string actionCardTypes|])

Before self reflection After self reflection
15




Identify Relations

Partial model
with classes

.- and patterns
- Composition P

- E.g., 1 H2S contain * Person

Identify relations
- Generalization 1

- E.g., Resident inherit UserRole Complete
- Association domain
model

- E.g., 1 Resident associate * Item

16




Overview

_________________________________

. Identify

Description classesand ———> player-role =

~ attributes patterns

N ! Complete

Format »  domain
description model
Few-shot __ | _ Identi
examples = Self-reflection Relat 3;
17




Table of Contents

Background

Approach

Experiment

Conclusion

A

14




EV a lu atl O n S Ch e m e Reference Solution S

Route* 0..1 pickUpRoute Item*
Date date 0.* str?ng d_escrip_lion
0..1 dropOffRoute pickUps| String dimension
int weight
0. 2
Score: 1 dropOffs |
SecondHandArticle Fooditem
« | string codeRFID
B - 0.. boolean discarded
Case 2: Semantically equivalent HemCategory category
Score . 1 Generated domain model
<<abstract>>
. 0..1 pickUpRoute Route* Item*
0 ] string description
Case 3: Partial match I — sting descripior
. int weight
SCO re . O . 5 Date requestedPickUpDate
0.5 .
dropOffs |
. <<enum>> :
C ase 4 . N om atC h preeli S-econdHandAltche Foodltem
Available 0.* gt:lrt‘t?sc:ti?rs’:m
S core: O Discarded ltemCategory category 0.." fooditem
19




Benchmark and Experiment Setup

%The LLM (GPT-4) and é‘@ Compared with the single-
configuration for the LLM is

step approach [7]
fixed for all settings

A benchmark with diverse set of description-domain model pairs
with different complexities [7]

illi}

Name

LabTracker

CelO

TeamSports

SHAS

OTS

Block

Tile-O

HBMS

Domain

Medical

Social

Sports

Smart Home

Education

Game

Game

Management

# of classes

16

13

16

23

16

15

18

18

# of attributes

43

23

24

26

25

30

19

32

# of relationships

22

22

20

27

19

24

21

22

20




Experiment: Research Questions

A
- ,
@

o

¥

RQ1: What is the performance of our multi-step LLM-based
automated domain model approach compared to a single-step
approach?

RQ2: What is the performance of identifying player-role
patterns with our multi-step LLM-based automated domain
modeling system?

21




RQ1. Generation Performance

Single-step Approach MIG Approach
Model Element  Precision  Recall  Fj-score  Precision Recall F1-score
Class 0.8483 0.5003 0.6280 0.8021 § 0.7502 4+ 0.7706
Attribute 0.5626 0.5329 0.5403 0.4825 § 0.57324 05176 ~
Relationship 0.2867 0.1420 0.1781 0.3256 0.3027 4 0.3120

Compared to the single-step approach, for MIG

t+ Recall for all elements increases

3§ Precision for classes and attributes drops slightly
~ Qverall F1 score for attributes stays similar
Overall F1 score for classes and relations

22




Player-role Pattern

Approach Precision Recall Fi-score
Zero-shot Single-step  0.9242 0.6143 0.7380
Two-shot Single-step 1 0.6571 0.7931
Multi-step 0.83¢ 0.8 0.8147

Compared to the single-step approach
The MIG approach the recall significantly
¥ In MIG LLMs seem to identify more patterns unnecessarily

23




Table of Contents

Background

Approach

Experiment

Conclusion

20




Natural Language

Description

Challenge: Domain Model Creation

e Performed manually by software engineers
o Time consuming
o High variation

e Existing automated approaches
o Requires some level of human interaction
o Domain elements are extracted mostly at sentence level

Domain Model

_— ==
Overview
Identify Identify
Description classessand ——> player-role
attributes patterns
Fomat _|
description
Few-shot Identify
A . | enti
examples Self-reflection —-> Relation

Complete
domain
model

Practice from LLM Research

|_‘._L
I__:I %—’-_'. Feedback [ Solution ]

Iterative, Involving domain Self-feedback
multi-step [19, 22] knowledge [10] [13,18]

Reference numbers are from the paper

RQ1. Generation Performance

Single-step Approach :Kﬁ?w
Model Element ~ Precision  Recall ~ Fj-score  Precision  Recall  Fj-score
Class 0.8483 0.5003 0.6280 0.8021 ‘ 0.7502 ¢+ 0.7706
Attribute 0.5626 0.5329 0.5403 04825 § 0.5732 4 05176 ~
Relationship 0.2867 0.1420 0.1781 0.3256 0.3027 ¢+ 0.3120

Compared to the single-step approach, for MIG

+ Recall for all elements increases

# Precision for classes and attributes drops slightly
~ Qverall F1 score for attributes stays simiar
Overall F1 score for classes and relations

21




	Slide 1: Multi-step Iterative Automated Domain Modeling with Large Language Models
	Slide 2
	Slide 3: Challenge: Domain Model Creation
	Slide 4: Background: Large Language Models (LLMs)
	Slide 5: Previous Approach: Single Step Generation with LLMs [7]
	Slide 6: Practice from LLM Research
	Slide 7
	Slide 8: Approach: Architecture
	Slide 9: How Do Engineers Create Domain Models?
	Slide 10: Overview
	Slide 11: Overview
	Slide 12: Step 1. Identify Classes and Attributes
	Slide 13: Identify Patterns
	Slide 14: Self Reflection
	Slide 15: Self Reflection
	Slide 16: Identify Relations
	Slide 17
	Slide 18
	Slide 19: Evaluation Scheme 
	Slide 20: Benchmark and Experiment Setup
	Slide 21: Experiment: Research Questions
	Slide 22: RQ1. Generation Performance
	Slide 23
	Slide 24
	Slide 25

